actif & le plus puissant de tous les éléments. Cette idée est assurément bien contraire à celle des chymistes & physiciens qui, faute d'un examen suffisant, & trompés par l'inaction apparente de la terre confinée dans son état d'agrégation, ont décidé que c'était un élément purement passif, qui ne sait que céder à l'impulsion des autres éléments. Il est bien vrai que lorsque les parties propres de la terre font unies entre elles, elles paraissent & sont en effet incapables d'agir sur d'autres corps, parce qu'elles épousent toute leur action mutuellement les unes sur les autres : mais force même avec laquelle elles adhèrent entre elles, qui les rend alors incapables de se prêter à d'autres unions, l'extrême dureté en un mot, & l'indissolubilité d'une masse de terre pure, doivent démontrer au contraire aux yeux d'un physicien éclairé, que si l'on supposse les parties propres de la terre affez séparées & éloignées les unes des autres pour qu'elles ne puissent se joindre & épuiser leur action les unes sur les autres, elles doivent jouer alors de toute cette tendance, qui est extrême, être en quelque sorte dans un nifus violent, jusqu'à quelle soit satisfaite, & par conséquent tendre avec la plus grande force à s'unir aux parties de matière quelconque qu'elles trouveront à leur portée, & auxquelles elles pourront se joindre. Nous ne connoissons point, à la vérité, de terre pure qui soit dans cet état d'agréation rompu, mais nous connoissons des composés dans lesquels les parties primitives intégrantes de l'élément terrestre ne font composées qu'avec des parties d'eau incapables de satisfaire toute leur tendance à l'union : ce sont les substances salines les plus simples, telles que les acides & les alkalis ; & nous pouvons juger par la force & par la véhémence de l'action de ces diffusants, combien fort violente celle des parties propres de la terre, qui pourrait exercer sur d'autres substances toute la force attractive qui leur est propre.

Quoiqu'il y ait tout lieu de croire que la masse entière de notre globe soit formée par un amas immense de cette terre élémentaire, vitrifiable, & peut-être vitrifiée, comme le pense l'illustre Buffon, nous ne trouvons cependant à la surface sur laquelle nous vivons, qu'une fort petite quantité de cette même terre non altérée & dans son état primitif : peut-être même n'en existe-t-il point du tout ; car comme nous l'avons vu, les pierres vitrifiables communes qui en sont principalement formées sont bien éloignées du degré de pureté de la terre élémentaire primitive.

On celfera d'être étonné de cette rareté de l'élément terrestre pur, si l'on considère que la surface de la terre, la seule partie de notre globe que nous puissions connoître, a été de tout temps & depuis son origine exposée à l'action continue des autres éléments ; & que par un travail qui n'a jamais souffert la moindre interruption, la nature, aidée du feu, de l'air & de l'eau, a peu à peu devasté les parties intégrantes de la terre élémentaire, & en les combinant d'une infinité de manières, & dans une infinité de proportions différentes avec les parties de ces autres éléments, en a formé le nombre innombrable de corps composés de diverses espèces qui occupent toute la surface jusqu'à une profondeur probablement fort petite par rapport au diamètre entier du globe, mais fort grande par rapport à nous, dont les plus grands efforts se sont réduits jusqu'à présenter à la créature de quelques centaines de pieds, c'est-à-dire à en effleurer à peine la première écorce.

Toutes les portions de terre élémentaire, qui après avoir été ainsi définites d'entr'elles, ont été combinées avec des parties de matière d'une autre nature, ont reçu une altération & des changements très-sensibles, dont l'empreinte reste toujours & qui les empêchent ensuite, malgré toutes les décompositions qui peuvent arriver, de reparoître dans leur première pureté & simplicité ; elles prennent donc différentes formes qui dépendent de la nature des composés dans la combinaison de la nature de ces différents éléments qui étaient entrés. Ainsi, par exemple, la terre qui a fait partie des animaux crustacés, ou plutôt de leurs coquilles & écailles, prend le caractère de celle que l'on nomme calcaire, laquelle est susceptible de se changer en chaux vive par l'action du feu. Celle qui est entrée dans la composition des plan-
que ces matières étrangères leur sont unies très-intimement. Ce feroit sans doute un beau problème à réfonder que de purifier et simplifier ces terres alliées, jusqu’au point de les assimiler parfaitement à la terre vitrifiable la plus pure. Mais il est vraisemblable que ce problème est au-dehors des forces de l’art; car s’il est très-difficile en général de séparer exactement et jusqu’à la dernière partie deux substances quelconques qui ont été une fois unies, cette séparation devient encore d’une difficulté infiniment plus grande, quand l’une des deux a une force d’attraction & d’affinité extrême, comme l’est celle de la terre. C’est la vraie raison pour laquelle nous ne trouvons qu’une si petite quantité de terre pure parmi les corps qui sont à notre portée; & qu’au contraire le globe est couvert d’une si grande quantité de substances terreuses si différentes les unes des autres, qu’on feroit porté à les regarder comme des êtres de nature essentiellement différente.

Terre argileuse.

Voyez Argile.

Terre calcaire.

Les chymiistes ont donné ce nom en général à toutes les substances terreuses ou pierreuses, qui expédiées à un degré de feu suffisant, prennent les caractères de la chaux vive.

La nature nous offre une quantité considérable de terres & pierres calcaires qui diffèrent entr’elles par quelques propriétés particulières dépendantes de leur pureté plus ou moins grande, mais qui se ressemblent par des propriétés essentielles communes à toutes, & spécialement par la calcinabilité.

Les principales espèces de ces terres ou pierres sont les craies, toutes les pierres coquillières calcinables dont on se feroit pour bâtir, tous les marbres, les falactites calcinables, les espèces d’albâtre & de saphirs qui sont au fait susceptibles de se changer en chaux vive par l’action du feu.
Parmi ces pierres il y en a un grand nombre qui sont visiblement impures & alliées ; ce sont singulièrement celles qui ont des couleurs : mais parmi les plus nettes & les plus blanches, il est encore difficile d'assigner quelles font celles dont la terre est la plus pure, parce que les chymistes & naturalistes ne les ont point encore comparées les unes aux autres sous ce point de vue. On devra sans doute regarder comme telles, celles qui se trouveront posséder au plus haut degré les propriétés essentielles de la terre calcaire, dont nous allons parler.

Les pierres calcaires sont toutes beaucoup moins dures qu'aucune pierre vitrifiable, il n'y en a point qui ne se laisse entamer facilement par les outils ; il s'en trouve dont les parties ayant été bien divisées, charriées par les eaux & enfouies successivement, les unes sur les autres, forment des concrétions ou plutôt des crysaltallisations fort nettes & même fort transparentes ; mais, quelque transparentes qu'elles soient, elles font toujours fort inférieures à cet égard aux pierres vitrifiables les plus pures.

On n'a point encore comparé exactement la pesanteur spécifique des différentes espèces de pierres calcaires avec les pierres vitrifiables ; on fait seulement qu'il y a certains fpaths de nature calcaire, qui surpassent beaucoup en pesanteur toutes les autres matières pierreuses & qu'on a nommés à cause de cela fpaths pefans. Mais comme il est bien certain que la pesanteur de ces pierres est due à des matières étrangères, & que ce n'est point en qualité de pierres calcaires qu'elles ont cette pesanteur extraordinaire, cela n'empêche point qu'on ne doive regarder les pierres calcaires en général, comme moins pesantes que les pierres vitrifiables : car à cette exception près, elles le sont toutes en effet.

Si l'on divise par la trituratation une terre ou pierre calcaire, & qu'on l'humecte ensuite avec de l'eau, elle en absorbe une certaine quantité, sur-tout si elle est bien fèche, & elle forme avec elle une forte de pâte dont les parties ont ensemble une certaine liaison ; mais cette pâte n'a jamais la même ductilité que celle qu'on forme avec les argilles, elle se dessèche aussi & se défunit beaucoup plus promptement.

Tous les acides ont une action marquée sur la terre calcaire ; ils l'attaquent & la diffèrent avec plus ou moins d'effervescence ; cette action des acides sur les terres & pierres calcaires est une des preuves qu'on a coutume d'employer pour les distinguer d'avec plusieurs autres matières terreuses & pierreuses, auxquelles elles ressemblent beaucoup par le coup-d'œil, & même par plusieurs propriétés.

Il est à observer sur cette effervescence que les terres calcaires sont en se diffusant dans les acides, qu'elle n'est due qu'au dégagement d'une substance qui est elle-même de nature acide, & dont les terres calcaires qui n'ont point éprouvé l'action du feu, font naturellement saturees : ce que cet acide a de plus remarquable, c'est qu'il sépare, qu'il se dégage en ne recevant le contact de l'eau, dans un récipient propre à le contenir, il ne s'y rassemble pas en liqueur & dans l'agglomération aigue, mais au contraire en fluide aussi élastique que l'air. C'est en vertu de cette agitation aérienne qui lui est propre, qu'il se dégage sous la forme de bulles qui font la matière même de l'effervescence. Cet acide qui prend toujours l'état de l'air quand il est libre, n'est bien connu que depuis les découvertes qu'en ont faites les docteurs Black, Priestley & autres physiciens modernes : la nature de son aggrégation, son élastivité, & plusieurs autres propriétés qui lui sont communes avec l'air, l'ont fait prendre d'abord pour de l'air ; & la propriété qu'il a de se combiner avec toutes les substances capables de s'unir aux acides, lui ont fait donner les noms d'air fixe, ou fixe, ou fixable. Mais il me paraît certain que ces noms sont très improprets, en ce que ce n'est point de l'air. Comme il est le feu & qu'il fait périr fubitement les animaux, j'ai cru devoir le désigner par le nom de gas mephytique, auquel je renvoie pour les autres propriétés. Je ferai encore létement observer ici que, comme cet acide aérien ou aérisformé est le plus foible de tous, il n'y en a aucun
TÈRE.

qui ne puisse le dégager des terres calcaires; & de là vient que ces terres dans leur état naturel font une effervescence sensible, quand on les diffusent par un liquide quelconque.

Je dois faire observer néanmoins que cette effervescence avec les acides, qu'on a regardée comme une preuve fière pour faire reconnaître les terres calcaires, ne l'est point du tout.

1° parce qu'une terre calcaire bien dépouillée de son gaz comme l'est la charpente pierreuse parfaite, se dilute dans tous les acides sans aucune effervescence: 2° parce que les terres calcaires, même pourvues de tout leur gaz, peuvent être aussi diffusées dans les acides quelconques sans qu'on apperçoive d'effervescence sensible; il suffit pour cela que l'acide dont on se sert soit affoibli par une très-grande quantité d'eau; & la raison en est, que le gaz qui est la matière de l'effervescence, étant insoluble à l'eau jusqu'à un point de saturation, s'y mêle en effet sans se manifester sous la forme d'air quand il trouve afféez d'eau pour s'y unir à mesure qu'il se dégage: 3° enfin parce qu'il y a des terres, & particulièrement parmi celles des métaux qui sont être calcaires peuvent faire effervescence avec les acides par le dégagement d'un gaz qui leur est uni ou qui provient de l'acide même employé à la dissolution. Voyez les articles Gáz.

Il résulte de ces observations, que les seuls moyens de s'assurer du caractère calcaire d'une terre ou d'une pierre, consistent dans l'examen de toutes ses propriétés. Voici les principales.

La terre calcaire fait sure tous les acides & forme avec eux des fèls neutres à base terreuse calcaire différents, fuissant la nature de l'acide.

Avec l'acide vitriolique elle forme un fèl cristallisable fort peu diffusible dans l'eau, lequel est connu sous le nom de frêlitaine.

Avec les acides nitreux & marin elle forme des fèls acres, amers & très-déliquescens; on les nomme nitre à base calcaire, & fèl marin à base calcaire.

Avec l'acide du vinaigré, la terre calcaire forme un fèl non déliquescent, & susceptible d'une belle cristallisation pourvue & ramifiée en espèce de végétation: c'est le fèl acide à base calcaire.

La terre calcaire a encore la propriété de décomposer tous les fèls ammoniacaux, dont elle dégage l'alkali volatil en s'unissant à leur acide lorsqu'elle est aidée d'un certain degré de chaleur.

Les terres & pierres calcaires exposées à l'action du feu, y diminuent de poids & y perdent une grande partie de leur consistance, ce qui vient de ce que le feu leur enlève une quantité de gaz & d'eau assez considérable qui entre dans leur combinaison; & comme les dernières portions de ces substances sont retenues très-fortement par la terre, il faut aussi un degré de feu très-fort pour les enlever entièrement; & c'est là principalement en quoi consiste le changement des pierres calcaires en chaux vifé pierreuse. Il suit de là que la terre calcaire dans son état naturel est un vrai mixte susceptible d'être décomposé & recomposé comme beaucoup d'autres. Voyez l'article Chaux pierreuse.

L'action du feu est plus forte que nous puissions l'exiger, suffit à peine pour fondre & vitrifier les terres & pierres calcaires lorsqu'elles sont bien purées; mais une chose très-remarquable, c'est que ces substances sont refractaires, tant qu'elles sont feuilles, deviennent de vrais fondans & facilitent considérablement la fusion & la vitrification de plusieurs autres substances aussi très-réfractaires, telles que les fables & les argiles. Ce phénomène dont la cause est très cachée & très difficile à trouver, paroit dépendre d'une disposition particulière du principe inflammable, dont aucune de ces matières n'est entièrement exempte, & peut-être d'une dernière portion du principe aqueux trop fortement retenue par la terre calcaire pour que le feu puisse l'enlever entièrement.

Les autres propriétés caractéristiques de la terre calcaire sont celles de cette même terre convertie en chaux vifée; nous les avons exposées & expliquées à l'article Chaux pierreuse.
JE SERAI SEULEMENT OBFÉRE QUE LES TERRES CALCAIRES
LES PLUS PURES QUE NOUS OFFRE LA NATURE, SONTE CELLES
QUI PROVIENTS DES ANIMAUX TESTACÉS & CRUSTACÉS,
DONE TOUTE LA SUBSTANCE ANIMALE A ÉTÉ ENTièrement
DÉTRuite & DÉCOMPOSÉE PAR UNE PUTREFACTION COMPLÈTE,
POUR LAQUELLE IL A FALLU DE LONGUES SUIVES DE SIECLES;
ENCORE EN FOUMETTANT À UNE ANALYSE EXACTE LES PIERRES
CALCAIRES QUI FONT LA CHAUX VIVE LA PLUS FORTE, Y DÉCOUVRANT
ON SOUVENIR UN RELE DE MATIÈRE INFLAMMABLE
QUI LES FAIT NOIRCIR À LA PREMIÈRE IMPRESSION DU FEU; &
M. MEYER Y A TROUVE AUSSI DE PETITES PORTIONS DE SÉL MARIN,
& DES VESTIGES D'AUTRES SUBSTANCES, QUI INDIQUENT
LEUR ORIGINE.

Mais indépendamment de ces fortes de pierres qui
PEUVENT SE CONVERTIR EN CHAUX VIVE, & OÙ LA TERRE CALCAIRE
EST PRESQUE PURE, IL Y EN A UN GRAND NOMBRE D'AUTRES;
DANS LESQUELLES CETTE ESÈCE DE TERRE SE TRouve MÉLÉE
& COMBINÉE EN UNE INFINITÉ DE MATIÈRES & DE PROPORTIONS
DIFFÉRENTES; IL N'Y A POINT DE TERRE PROPRE À LA
VÉGÉTATION DANS LAQUELLE ELLE NE SE TRouve NATURELLE
MENT MÉLÉE EN PLUS OU MOINS GRANDE QUANTITÉ; IL Y A
FORT PEU D'ARGILLES QUI N'EN CONTIENNENT PLUS OU MOINS.
TOUTES TERRES & PIERRES QUI PORTENT LE NOM DE MARNES,
FONT CALCAIRES QUELQUESFOIS POURTIÉ & MOINS.
LA CLASSE IMMÊME DES GYPÈSÈS, DES FÉLÉNITES, DES ALBÂTRES
& DES SPATHES, QUI NE FONT POINT EFFERVESCENCE AVEC
LES ACIDES, DOIT ÊTRE REGARDÉE COMME RENFERMANT DES
COMPOSÉS DE TERRE CALCAIRE UNIQUE JUSQU'À SATURATION,
SOIT AVEC L'ACIDE VITRIOLIQUE, SOIT AVEC QUELQUE AUTRE
ACIDE, OU À QUELQUE MATIÈRE FAISANT FONCTION D'ACIDE.
ENFIN IL Y A LIEU DE PRÉSUMER, APRÈS LES DÉCOUVRETTES
DE M. SCELÉ & D'AUTRES CHYMISTES MODERNES, QUE
LA PARTIE TERRESTRE DES OS DE TOUS LES ANIMAUX
EST UNE TERRE CALCAIRE COMBINÉE AVEC UNE QUANTITÉ PLUS
OU MOINS GRANDE D'ACIDE PHOSPHORIQUES, COMME JE L'AIS DIT
À L'ARTICLE OS DES ANIMAUX. À MESURE QU'ON EXAMINERA
CHIMIQUEMENT LE NOMBRE INFINTI DE TERRES & DE
PIERRES OÙ EST COMPOSÉE LA SURFACE DU GLOBE, ON
DÉCOUVRA LA TERRE CALCAIRE PROBABLEMENT DANS UN
BEAUCOUP PLUS GRAND NOMBRE DE CES SUBSTANCES; ENFORTE

QU'ON PEUT LA REGARDER COMME UNE DES ESPÈCES DE TERRES
DES PLUS UNIVERSELLLEMENT RÉPANDUES DANS LA NATURE.

Terre damnée ou tête morte.

Ce sont les noms que les anciens chymistes ont donné aux résidus fixes de leur distillation, dont ils ne pouvaient plus ou dont ils croyaient ne pouvoir plus rien tirer.

Terre foliée du tartre.

Ce n'est qu'improprement, & seulement à cause du coup-d'œil & de l'apparence terreuse, qu'on a donné ce nom à la préparation dont il s'agit, puisqu'elle n'est autre chose qu'un sel neutre acétylén à base d'alkali fixe végétal, ou une autre combinaison jusqu'au point de saturation, de l'acide du vinaigre avec l'alkali fixe du tartre ou végétal. Ce fel a été nommé aussi tartre régénéré, quoiqu'il soit en effet fort différent du vrai tartre. Cette dénomination est venue de ce que pour faire ce fel on prend à l'alkali du tartre un acide qui ressemble à quelques égards à l'acide du tartre, quoiqu'il en diffère à d'autres égards beaucoup davantage, comme on peut le voir aux articles TARTRE & VINAIGRE.

Pour faire la terre foliée du tartre, on met, suivant la plupart des Diffenaires, dans une cucurbita de verre la quantité qu'on juge à propos de fel alkali du tartre bien pur, & on verse par-decess, à diverses reprises, une suffisante quantité de bon vinaigre distillé, pour saturer entièrement tout l'alkali, ou même un peu plus qu'il n'en faut ; ce que l'on reconoit à la cessation totale de l'effervescence. On filtre cette liqueur sature, & on la fait égérer jusque à sécicité à une chaleur douce : on diffuse dans une suffisante quantité d'esprit de vin ce fel desséché : on fait évaporer de nouveau cette dissolution jusqu'à sécicité, & on obtient un fel plus ou moins blanc, quelquefois foyeur ou comme composé de petites feuilles ou écailles ; c'est cette dernière forme qui lui a fait donner l'épithète de foliée. Aussi-tôt que ce fel est desséché, on doit l'en-
TE R R E.

fermer encore chaud dans une bouteille qu'on bouche bien, pour le conserver sec, parce qu'il s'humecte trés-promptement à l'air.

Lorsqu'on verse le vinaigre distillé fur le fel de tartre, il ne le fait d'abord que peu ou point d'effervescence, fur-tout si l'on en met très-peu; mais à mesure qu'on ajoute de nouveau vinaigre, l'effervescence augmente beaucoup et devient même affez considérable pour faire répandre une partie de la liqueur, si l'on n'y prend pas garde. Cette effervescence est causée par une très-grande quantité d'air, ou plutôt de gas qui se dégage pendant la saturation; aussi la vapeur qui s'exhale de ce mélang e est-elle très-aéree, et si piquante par cette raison-là, que si on la retient pendant quelque temps en fermant le vase, et qu'on vienne ensuite à la respirer, elle produit un effet d'irritation & de suffocation aussi fort que celles de l'alkali volatil ou de l'acide sulfureux volatil, quoiqu'elle soit réellement d'un genre fort différent de l'une & de l'autre; car celle dont il s'agit n'est presque que de l'eau aérée, comme le gas des eaux minérales spiritueuses.

Quand la saturation est avancée jusqu'à un certain point, l'effervescence diminue & même celle entirety, quoique la saturation ne fasse pas encore complète ce qui vient de se que les dernières portions d'acide & d'alkali ont plus de peine à se combiner. On facilite cette combinaison en agitant de temps en temps la liqueur; cette agitation renouvelle l'effervescence: il est même à propos, lorsqu'on n'aperçoit plus aucune effervescence malgré l'agitation, de laisser séjourner la liqueur pendant quelque temps, comme le pratique M. Baumé.

Ce chymiste, très-excellent observateur, a remarqué qu'il se séparé du mélange une certaine quantité de matière terreuse qui provient de l'alkali fixe, et qu'il est essentiel de séparer par le filtre pour avoir une terre foliée plus blanche; il a remarqué aussi que lorsqu'il alkali qu'on emploie est bien pur & parfaitement exempt de mélangé de tout fel neutre, la terre foliée qui en résulte n'est point feuilletée & n'a aucune apparence de crystallisation.

Nous avons déjà eu occasion de remarquer que ce fel acéteux est du nombre des fels déliquescens: cette qualité lui vient de la foiblete de l'union de son acide avec son alkali; ce sont principalement les principes huileux & spiritueux du vinaigre qui empêchent cet acide de s'unir intimement avec l'alkali. La faveur de la terre foliée est vive, piquante & presque un peu brûlante; on y distingue en quelque forte en même tems la faveur du vinaigre, & un peu de celle de l'alkali fixe. Ce fel est du nombre de ceux qui se dissolvant dans l'esprit de vin.

La seule action du feu peut le décomposer, mais avec une altération sensible de l'acide du vinaigre; qui ne passe pas dans la distillation en vinaigre radical, comme celui qu'on obtient par la décomposition sans interméde des cristaux de Vénus. Si l'on veut retirer un acide du vinaigre bien fort de la terre foliée du tartre, il faut la distiller avec une addition d'acide virtilique; mais l'acide qui passe alors, participe de l'acide sulfureux volatil.

Les pharmaciens se font fort occupés des moyens d'avoir une terre foliée bien blanche; il paraît que le meilleur de tous consiste à ne se servir que de premières portions les moins huileuses de l'acide qui montent à une chaleur douce dans la distillation du vinaigre.

On peut faire aussi un fel fort analogue à celui-ci, en combinant l'acide du vinaigre, jusqu'à saturation, avec le natrum ou la base du fel marin. Ce dernier difère de la terre foliée ordinaire, principalement en ce qu'il est susceptible d'une crystallisation permanente, & en ce que lorsque l'on distille à la corne sans interméde, on peut retirer un acide du vinaigre affez fort & moins altéré que celui de la terre foliée à base d'alkali fixe végétal.

La terre foliée de tartre n'est guère usitée que dans la médecine; on la regarde comme un fondant & un apéritif affez puissant; il y a lieu de croire qu'il pofede en effet ces vertus à cause de l'action affez considérable qui rette; tant à son acide qu'à son alkali. La dofe en est depuis quinze ou vingt grains jusqu'à un demi-gros & même plus, lorsqu'on n'apprécie d'apart point d'irritation.
TERRE.

Terre gypseuse.

Quelques chimistes ont donné ce nom au gypse, & à la terre contenue dans cette sélénite. Comme la terre du gypse séparée de l'acide vitriolique ne paroit point différente de la terre calcaire pure, nous renvoyons aux articles GYPSE, SÉLÉNITE & TERRE CALCAIRE.

Terre mercurielle.

La terre mercurielle est une substance que Beccher & plusieurs autres chimistes croient entrer comme principe dans la composition de plusieurs corps, & en particulier dans celle des matières métalliques, avec la terre vitrifiable & le philogistique que ce chimiste nomme terre inflammable : mais personne jusqu'à présent n'a démontré d'une manière satisfaisante l'existence de ce principe mercurielle. Le smétau & l'acide marin, duquel Beccher croit aussi que la terre mercurielle fait partie, prétendent à la vérité quelques phénomènes capables de faire supposer qu'en effet ces composés contiennent quelque principe différent de tous ceux que nous connaissons ; mais ces phénomènes ne suffisent point pour établir d'une manière certaine l'existence de ce principe. Voyez ce qui est dit à ce sujet aux articles ACIDE MARIN, MÉTALURGIE, MÉTAUX, MÉTALLISATION.

J'ajouterai feulemement ici à cette occasion une observation intéressante, publiée par M. Rouelle dans le Journal de médecine, octobre 1777 : c'est que ce chimiste a découvert du mercure coulant dans les fels marins gris qu'on prépare en divers endroits de nos côtes de France. D'où vient ce mercure ? C'est ce que M. Rouelle se propose d'examiner.

TERRE des fels d'Enfiss & de Sélitz.

C'est une espèce de terre dissoluble dans tous les acides, comme la terre calcaire, & qui n'est cependant ni une terre calcaire, ni une terre argileuse, ni une terre vitrifiable. Le docteur Black, l'un des premiers

TERRE.

chimistes qui l'aient examinée, lui a affecté le nom de magnésie. Voyez-en les propriétés à l'article de ce nom.

Terre vitrifiable.

L'espèce de terre que les chimistes ont nommée vitrifiable, est regardée comme la plus pure, la plus simple & la plus élémentaire de toutes les substances terres connues. Comme nous avons fait mention de toutes les propriétés essentielles de cette terre à l'article général TERRE, nous y renvoyons pour cet objet; nous nous contenterons de faire observer ici en peu de mots, au sujet des pierres formées principalement de l'union des parties de cette espèce de terre, & qu'on nomme par cette raison pierres vitrifiables, qu'on les distingue facilement de toutes les autres, par leur dureté qui est assez grande pour qu'elles ne laissent point entamer par les outils trempés, & pour qu'elles cassent feu lorsqu'elles sont fraîchement sorties de l'acier. Elles ont aussi la propriété de faire feu lorsqu'on en frappe deux l'une contre l'autre ; mais alors c'est un feu intérieur, & non des étincelles faillantes, comme quand on les frappe avec l'acier. Au reste, cette propriété des pierres vitrifiables de produire ainsi une lumière intérieure par la percussion, leur est commune avec le verre factice, avec la porcelaine & autres matières vitrifiées ; elle paroit un phénomène dépendant de l'électricité.

Lorsqu'on pulvérise une pierre vitrifiable, qu'on la broie en parties très-fines, si l'on vient ensuite à l'humecter avec de l'eau, elle n'en absorbe qu'une quantité fort petite ; elle forme une pâte dont les parties adhérent fortement entre elles, fans cependant que cette pâte ait la moindre ductilité ; lorsqu'elle est claire, elle file seulement comme une matière huileuse & vitreuse ; quand elle est plus épaissie & qu'on veut lui donner une forme, elle ne la conserve pas, mais elle s'affaîle & retombe continuellement sur elle-même, elle se sec à très-promptement & très-facilement. Si au contraire on laisse cette matière broyée en repos sous de l'eau, ses parties propres s'unissent & le
TRAVAUX DES MINES.

semblé, lorsqu'on youdra faire un examen plus exact des pierres composées, en les fumantant successivement aux épreuves décisives que nous avons indiquées aux articles des principales espèces de terres ou de pierres, pour reconnaître exactement leur nature.

TRAVAUX DES MINES. Nous avons fait connaissance avec l'article Mines & Pyrites, la nature des principaux minéraux métalliques ; nous avons indiqué les substances dont ces minéraux sont composés ; nous avons même expliqué à l'article Essais des mines, les procédés par lesquels on parvient à faire une analyse exacte de ces minéraux composés, & à reconnaître au juste la nature & la quantité des substances métalliques qu'ils contiennent : pour compléter tout ce qui est relatif à cet objet important, nous allons exposer dans le présent article les principales manipulations par lesquelles on retire dans les travaux en grond, les métaux, le soufre, les vitriols & autres substances utiles qui renferment les minéraux métalliques. Ce que nous dirons sur cet objet, sera extrait principalement du Traité de la fonderie des mines par Schlüter, traduit de l'allemand par M. Heliot ; parce que c'est, entre les ouvrages modernes sur ces objets, celui qui nous a paru le plus exact. Nous parlerons d'abord des travaux qu'on fait sur les matières pyriteuses pour en retirer le soufre, les vitriols & l'alun, & enfin de ceux par lesquels on retire les matières métalliques des mines proprement dites, & accidentellement les mêmes matières que des pyrites. Comme le premier article n'est que la suite des articles Mines, Pyrites, & Essais des mines, on fera bien qu'il est à propos d'avoir lu ces articles avant que de consulter celui-ci. Il pourrait être inutile de se montrer les détails en étant si considérables, qu'il faut des ouvrages écrits pour les exposer ; car nous sommes assez par cette raison, à nous réduire ici à ce qu'il y a de plus général & de plus essentiel.

Extraits du soufre des pyrites & d'autres minéraux.

Pour retirer le soufre des pyrites, il suffit d'exposer
TRAVAUX DES MINES.

ces minéraux à une chaleur capable de les sublimer, ou de le faire passer en distillation dans des vaisseaux fermés, pour l'empêcher de se brûler.

On retire le fouvre des pyrites par un travail en grand à Schwartzzenberg en Saxe, dans le haut pays des mines, & en Bohême dans un endroit nommé Alten-Sattel.

Les fourneaux qui servent à ce travail, sont longs comme des espèces de galeries voûtées par le haut, & à la voûte desquelles il y a plusieurs ouvertures ou car- neaux. On les nomme fourneaux à chasser le fouivre.

Ces fourneaux reçoivent des tuyaux de terre dans lesquels on met les pyrites cassis en morceaux de la grosseur d'une petite noix; on fait entrer trois quintaux de pyrites dans onze de ces tuyaux. Ces tuyaux sont placés dans le fourneau presque horizontalement, & n'ont guère qu'un pouce de pente; ils vont en se rétrécissant par le bout qui sort du fourneau d'environ cinq ou six pouces. On place dans l'intérieur de chaque tuyau une étoile de terre qui s'arrête dans l'endroit où il commence à se rétrécir pour retenir les pyrites; on adapte à chaque tuyau un récipient couvert d'une plaque de plomb, percée d'un petit trou pour donner de l'air au fouivre. On bouche exactement l'autre bout du tuyau, & on fait un feu modéré de bois de fagotin; au bout d'environ huit heures, on trouve que le fouivre des pyrites a passé dans les récipients.

On retire les pyrites utilisées par le bout large, & on en remet de nouvelles. Ces pyrites épuisées se nomment brûlures de fouivre, on en retire enfin de vitriol, comme nous le dirons bientôt.

Les onze tuyaux dans lesquels on a mis en trois fois neuf quintaux de pyrites, rendent depuis 100 jusqu'à 150 livres de fouivre cru qui est impur, & qu'on purifie par une seconde distillation.

Cette purification du fouivre cru se fait aussi dans un fourneau en forme de galerie, dans lequel on range cinq cucurbites de fer de chaque côté, qui sont inclinées, & dans lesquelles on met jusqu'à huit quintaux & demi de fouivre cru; on y lute des tuyaux de terre qui sont disposés de manière à faire fonction de chapiteaux; le

le bec de ce tuyau entre dans une épice de cruche de terre qu'on nomme avant-coulant. Cet avant-coulant a trois ouvertures; la plus petite de la partie supérieure pour donner de l'air & qu'on laisse ouverte; & une troisième dans la partie inférieure; on bouché cette dernière avec une cheville de bois.

Lorsque tout est bien préparé, on commence à faire du feu vers les sept heures du soir, & on le diminue un peu dès que le fouivre commence à distiller. À trois heures du matin, on tire pour la première fois les che- vinles qui bouchent les trous inférieurs des avant-coulans, & le fouivre coule dans des pots de terre à deux anses qu'on met dessous pour le recevoir. Le feu dans cette distillation demeure à être modéré & conduit avec prudence, fans quoi on retire moins de fouivre, & d'ailleurs il est encore gris & n'a pas la belle couleur jaune qu'il doit avoir lorsqu'il est purifié; le déchet ordinaire sur huit quintaux de fouivre brut ou cru est tout au plus d'un quintal.

Lorsque tout le fouivre est coulé & un peu refroidi dans les pots de terre, on le jette dans des moules de bois de hêtre, qui ont été trempés auparavant dans de l'eau & bien égouttés. Aussi-tôt que le fouivre est refroidi dans les moules, on les ouvre & on tire les cylindres de fouivre pour les arranger dans des tonneaux; c'est ce qu'on nomme fouivre en canons.

Comme le fouivre ne résiste pas seulement dans les pyrites, mais qu'il est aussi en grande quantité dans presque tous les minéraux métalliques, il est évident qu'on pourrait en retirer, par les travaux en grand, des différentes mines qui en contiennent beaucoup & dont on est obligé de les séparer avant de fondre la mine; mais le fouivre étant une drogue de peu de valeur, on ne prend pas ordinairement le peine de le retirer des mines, on peut se contenter de s'en débarasser, en expoli- tant les mines qui en contiennent à un degré de feu suffisant pour l'enlever; opération qui se nomme torréfaction, rôtissage ou grillage des mines.

Il y a cependant des mines qui en contiennent en grande quantité, qu'on peut ramasser & qu'on ramasse

Tome IV.
TRAVAUX DES MINES:

en effet une partie de leur fouisse dans l'opération ordinaire du grillage, sans prêter se donner de soins partiels pour cela. Telle est la mine de Rammelsberg dans le pays du Hartz.

Cette mine, qui est de plomb tenant argent, est en partie très-pure & en partie mêlée de pyrites cuivrees & de fouisse, ce qui oblige à la roiter.

Pour en faire le grillage, on la stratifie lits par lits avec du bois en pleine campagne, en diminuant l'étendue des lits à mesure qu'on les éleve ; on en forme ainsi un tas figuré en pyramide quadrangulaire tomenteuse ; par le haut, & dont la base est d'environ 3 ½ pieds en quadrat.

On laisse par le bas quelques interces pour donner entrée à l'air, & on garnit bien les côtés & le haut de la pyramide avec des menux menus pour concentrer la chaleur à la faire durer plus long-temps ; il y a dans le centre de cette pyramide un canal qui descendent verticalement du sommet à la base.

Quand on a achevé d'arranger le grillage, on jette par le haut du canal, plein une grande cuiller de scories rouges de feu, & telles qu'elles sortent du fourneau de fonte, ce qui met le feu à des iflons & à du charbon qu'on a mis express au bas, & enfin par communication à tout le bois du grillage : ce bois se trouve presque tout consumé vers le troisième jour ; mais le fouisse du minéral étant alors en état de brûler de lui-même, le feu ne discontinue pas pour cela.

Quand un grillage a resté en feu pendant quinze jours ou environ, le minéral devient très-gras ; c'est à dire, qu'il paroit enduit comme d'une espece de vernis. On fait alors au-dessus du grillage vingt à vingt-cinq trous ou fosses, où le fouisse le ramasse, & l'on y puit trois fois par jour pour le jeter dans l'eau. Ce fouisse n'est pas entièrement pur, il est fouisse crû ou brut, & on l'envoie aux fabriques de fouisse pour le purifier, comme nous avons dit.

Comme cette mine de Rammelsberg est très-sulfureuse, le premier grillage dont nous parlons dure au moins trois mois ; & pendant cet temps, s'il n'a pas tombé beaucoup de pluie, ou si l'opération n'a pas

TRAVAUX DES MINES:

manqué par des éboulemen et des crevailles qui, donnant trop d'air, font brûler tout le fouisse, on ramasse depuis dix jusqu'à vingt quintaux de fouisse crud.

On perdait autrefois tout le fouisse de cette mine comme celui de la plupart des autres ; ce fut en 1670 qu'un employé dans ces mines, nommé Christoph Sauter, trouva le moyen de le recueillir à peu près comme on fait à présent.

Les minéraux métalliques ne font point les seules substances dont on retire le fouisse ; cette matière paraît répandue dans la terre en si grande quantité, que les métaux ne suffisent pas pour absorber tout ce qu'il y en a : on en trouve de tout pur en plusieurs endroits & sous différentes formes, principalement dans le voisinage des volcans, dans des cavernes, dans des sources d'eaux minérales : tels sont le fouisse vierge ou vis, opaque, le transparent que nous nommons fouisse de Quito, les fleurs de fouisse naturelles, telles que sont celles des eaux d'Aix-la-Chapelle ; enfin il en est le plus souvent mélangé avec différentes terres ; il faut pourtant remarquer que toutes ces espèces de fouisse qui ne font point minéralisées par les matières métalliques, ne se rencontrent guère que dans le voisinage des volcans, dans celui des eaux minérales chaudes, & par conséquent dans des endroits où la nature semble avoir établi de grands ateliers ou laboratoires souterrains, dans lesquels elle peut faire des analyses & décompositions de minéraux sulfureux, & en séparer le fouisse, comme nous le faisons en petit dans nos fonderies & dans nos laboratoires. Quoi qu'il en soit, une des plus fameuses & des plus belles minieres de fouisse qui foient dans le monde, est celle que l'on nomme la Salutera, en françois la Solvatere. M. l'abbé Nollet, qui dans son voyage d'Italie l'a visitée en grand physicien, a donné dans les Mémoires de l'académie, les observations intéressantes qu'il y a faites, & que nous allons rapporter en abrégé.

On trouve auprès de Pouzzol en Italie, la grande & fameuse miniere de fouisse & d'alun, qui porte aujourd'hui...
TRAVAUX DES MINES.

D'hui le nom de Solfatara; c'est une petite plaine ovale, dont le grand diamètre a environ 200 toises, élevée environ de 300 toises au-dessus du niveau de la mer; elle est bordée de hautes collines et de grands rochers qui tombent en ruine, dont les débris forment des talus extrêmement roides.

Presque tout le terrain est pelé et blanc comme de la marne, et par-lout sensiblement plus chaud que l'air de l'atmosphère ne l'est dans les plus grandes chaleurs de l'été: de sorte qu'on fe brûle les pieds à travers les fouliers. On ne peut y méconnoître le fourré; il s'éleve de presque tous ces endroits une fumée qui monte affle haut, & qui a bien l'odeur de fourré; tout cela porte naturellement à croire que cette fumée est l'ouvrage d'un feu souterrain.

Vers le milieu de ce champ on voit une espece de bassin plus bas que le reste de la plaine de 3 ou 4 pieds, qui retentit quand on y marche, comme s'il y avait defous quelque grande cavité dont la voute est peu d'épaisseur. On rencontre après cela le lac Agnano, dont l'eau paroit bouillante; il est vrai que l'eau en est chaude, mais pas assez pour bouillir; cette espece d'ébullition vient des vapeurs qui s'élevent du fond du lac, telles déterminées par l'action des feux souterrains, ont force de fouler la masse de l'eau.

Auprès de ce lac il y a des fosses pen profondes, desquelles il s'exhale des vapeurs sulfureuses: ces fosses sont destinées à la guérison des galleux qui viennent en recevoir les vapeurs. Enfin on trouve des excavations plus profondes, d'où l'on tire une pierre tendre qui donne le fourré, comme nous l'allons voir. Il s'exhale de là des vapeurs qui forment avec bruit, & qui ne sont que du fourré qui se sublime le long des crevasses, & même aux parois des rochers, en formant des masses énormes: car dans un temps calme on voit constamment ces vapeurs s'élever jusqu'à 25 ou 30 pieds de la surface de la terre.

Ces vapeurs, en s'attachant aux parois des rochers, y forment des groupes de fourré énormes, qui s'en détachent quelquefois en eux-mêmes, ce qui rend ces endroits d'un dangereux accès.

En entrant à la Solfatara, du côté de Pouzzol, on voit des bâtiments où l'on affine le soufre & où on en tient magasin.

Sous un grand hangar adossé contre un mur, & ouvert par trois côtés, on tire le soufre par distillation des pierres tendres dont nous avons parlé. Les ouvriers fouillent la terre pour les avoir; & négligent toutes celles qui ne trouvent à la superficie de la terre; elles font cependant couvertes d'un fourré déjà tout formé & bien jaune: mais les ouvriers disent qu'elles ont perdu leur eprit, & que le soufre qui en vient n'a pas une auffe bonne qualité que celui qui vient des pierres tirées de l'intérieur de la terre.

Cette mine étant tirée de la terre, on la met en morceaux dans des pots de terre cuite qui contiennent environ 20 pintes, mesure de Paris, dont l'ouverture est de la même largeur que le fond, mais avec un ventre plus large, couvert d'un couvercle de la même terre cuite, qu'on lute exactement. On arrange ces pots sur deux lignes parallèles dans une maçonnerie de brique, qui forme, comme on va le voir, ces deux côtés d'un four; les pots sont placés dans l'intérieur de ces murailles, de manière que le centre du pot est au centre de l'épaisseur de la muraille, mais qu'une partie de ces pots déborde dans l'intérieur & autant dans l'extérieur on met dix de ces pots dans chaque fourneau; il y a, cinq dans chaque muraille, qui forment les parois du fourneau; ces parois laissent entrer une espèce de 14 ou 18 pouces, & font furmoundées d'une voute; de manière que cela forme alors un fourneau qui a pieds de longueur & 2 pieds & demi de hauteur; ouvert par un bouch, & fermé de l'autre, à la réserve d'une petite cheminée pour laisser passer la fumée.

Chacun de ces pots est percé à fa partie supérieure en dehors du fourneau, pour recevoir un tuyau de 8 lignes de diamètre & d'un pied de long, qui communique à un pot de la même grandeur placé en dehors du four; couvert comme les précédens, mais percé d'un trou rond à la base, de la largeur de 15 ou 18 lignes.
TRA VAUX DES MINES.

Enfin chacun de ces derniers pots répond à une tinette de bois placée plus bas dans une tranchée faite exprès.

On bâit quatre ou cinq de ces fours sous le même hangar, on les allume en même temps, & on les démolit après la distillation, soit pour renouveler les pots, soit pour en ôter plus facilement les résidus.

Le feu qu'on allume dans chaque four échauffe les premiers pots qui contiennent la terre sulfureuse. Le souffre monte en fumée dans la partie supérieure du pot, d'où il passe par le tuyau de communication dans le vaisselier extérieur : alors les vapeurs se condensent, prennent une forme liquide, & coulent par le trou qui est pratique en bas, dans la tinette, d'où on les retire aisément, parce qu'on leur donne une figure conique, dont la pointe tronquée est en bas ; & d'ailleurs les douves ne sont retournées entre elles que par des cercles qui se lâchent à volonté, de manière qu'on écarte les douves aussi à volonté ; alors la masse sulfureuse se trouve à nu ; on la porte aux bâtiments dont nous avons parlé: on la refond pour l'épurer & la mouler en bâtons, comme on nous l'apporte.

Extraction des vitriols des pyrites.

Le souffre n'est pas la seule substance qu'on retire des pyrites, elles fournissent aussi outre cela différentes espèces de vitriols & de l'alun, suivant leur nature ; en sorte qu'elles peuvent être regardées comme des mines de vitriols & d'alun, aussi bien que comme des mines de souffre.

Mais ces fels n'existent pas tout formés dans les pyrites comme le souffre, ils font au contraire le produit de la décomposition des pyrites & de nouvelles combinaisons qui résultent de cette composition. Dans les pyrites martiales d'un jaune pâle, cette décomposition se fait d'elle-même à l'aide de l'humidité & de l'air, & par la réaction de leur principe sulfureux sur le fer qu'elles contiennent, & avec lequel l'acide de ce souffre forme le vitriol mural, comme on le peut voir à l'article Pyrites. Lorsqu'on veut retirer le vitriol de ces pyrites, on le met en gros tas de trois pieds

TRA VAUX DES MINES.

Il n'en est pas nécessaire que les pyrites tombent en efflorescence pour en retirer le vitriol; l'action du feu qui décomposse une partie du souffre, produit le même effet aussi dans le travail en grand, par lequel on prépare le vitriol à Schwartzemberg : dans la haute Saxe, on ne fait que lessiver les pyrites dont on a distillé le souffre, qu'on nomme, comme nous avons dit, darts quelques manufactures brûlures de souffre, & qu'ils appellent dans celle-ci tifs de souffre. Tout ce travail consiste à bien charger la lessive de vitriol en la faisant passer de caisse en caisse sur de nouveaux tifs de souffre, ce qui s'appelle doubler la lessive. Ensuite on la fait évaporer dans une chaudière de plomb, qu'on nomme chaudière à souffre ; après quoi on la fait cristalliser dans une caisse de bois, qui se nomme dans cette manufacture caisse à repotier. Les tifs de souffre dont on a ainsi retiré le vitriol, ne sont pas épuisés pour cela ; on les étend en plein air devant l'atelier de la fabrique ; au bout de deux ans on les lessive encore, & ils fournissent de nouveau vitriol.

On fait aussi du vitriol à Geyer dans la haute Saxe ; la différence qu'il y a entre cette fabrique & celle de Schwartzemberg, c'est qu'on ne s'y furt point de pyrites dont on ait retiré le souffre par la distillation ; on se contente de les griller pendant quinze jours ; après quoi on les lessive, on evapore la lessive dans des chaudières de plomb ; on la fait passer ensuite dans des baquets où elle dépôse un limon jaune ; ces baquets se nomment baquets de rafraîchissement. L'évaporation & l'éclaircissement de cette lessive durent vingt-quatre heures, après quoi on la fait passer dans des caisses pour l'y faire cristalliser : ces vaisseaux se nomment Schwartzemberg bancs de cristallisation.

Les pyrites qui ont été grillées & lessivées une pro-

F 4
TRAVAUX DES MINES.

Pour revenir à la fumée de cuivre, dont on tire le vitriol martia à Goslard, on en fait plusieurs-levées, en faisant passer la même eau sur de nouvelle matière; on l’évapore, on la fait déposer & on cristallise, comme nous l’avons déjà dit. La première eau se nomme leffre sauvage; les différentes cuves employées à Goslard, dans ce travail, portent des noms relatifs à leurs usages, comme cuves d’entrepôt, cuves du limon, cuves à laver.

Ce qui reste après les levées de cette fumée de cuivre, est une espèce de mine qui n’est pas à beaucoup près épuisée de substancess métalliques; les ouvriers appellent vitriol menu la partie la plus fine, & noyau de vitriol celle qui est la plus grosse; on les porte l’une & l’autre aux fonderies, pour être grillées & fondues avec la mine de Rammelsberg, parce qu’on en tire, de même que de cette mine, du plomb & de l’argent.

On tire aussi à Goslard & de la même mine de Rammelsberg un vitriol blanc, dont la base est du zinc. La découverte de ce vitriol est de 1570; on le doit au duc Julien, qui le nommait alors alun de mine. Il est connu à présent sous le nom de vitriol de zinc, de vitriol blanc, de couperose blanche, ou de vitriol de Goslard.

Pour faire ce vitriol, on prend de la mine de plomb & argent de Rammelsberg après le premier grillage dont nous avons parlé, & dans lequel on retire du soufre; on lui fait toutes les mêmes opérations que pour le vitriol martia, à l’exception de la cristallisation, que l’on empêche au contraire avec grand soin. Pour y parvenir, on l’hérisse ce vitriol dans des chaudières de cuivre, à la faveur de l’eau qu’il a retenue dans la cristallisation; on évapore une partie de l’humidité, & des femmes employées à ce travail le remuent continuellement jusqu’à ce qu’il ait le degré de consistance requis; ce mouvement le divise en petites molécules cristallines très-minces, & lui donne la blancheur du plus beau sucre; qualité qui le rend de vente, & qu’on lui procure, non-feulement par le moyen dont nous venons de parler, mais en faisant
TRAVAUX DES MINES.

piter aussi-tôt une terre martiale, & donne lieu, après avoir décanté & évaporé la liqueur, de retirer des cristaux d'alun.

Enfin, il parait qu'en général quand on veut retirer de l'alun des minéraux sulfureux & métalliques, on éprouve des difficultés pour la cristallisation; & pour l'avoir beau & pur, on est presque toujours obligé d'avoir recours à quelques additions de matières alcalines, comme la chaux & les fels alcalins fixes ou volatils.

Ces difficultés viennent en partie de ce qu'il se forme en même temps différentes fortes de fels dans la décomposition de ces minéraux; la cristallisation de ces fels se fait presque au même degré d'évaporation & de refroidissement. Il nait de là nécessairement une confusion de ces mêmes fels; aussi ne trouve-t-on guère de vitriols retirés des minéraux, qui soient parfaitement purs, & qui ne contiennent pas quelques parties d'alun ou de quelques fels vitrioliques à base terreuse, qui participent de la nature de l'alun: la fèt de Cocolat & le gilla vitrioli ne font autre chose que ces fels étrangers au vitriol, & réciproquement l'alun qu'on retire des minéraux métalliques contient presque toujours quelques portions de vitriol, par-tout martial.

Mais on trouve aussi des terres & pierres non métalliques, qui contiennent de l'alun tout formé ou les matériaux: telle est celle dont on retire ce fèt à la Solfatara. Cette mine est une terre assez semblable à la marine par la confiance & par la couleur; on la ramasse dans la plaine même, & dans la partie occidentale de la Solfatara; on en remplit jusqu'aux trois quarts, des chaudieres de plomb de deux pieds & demi de diamètre & d'autant de profondeur; ces chaudieres sont enfournées presque jusqu'à fleur de terre sous un grand hangard élevé des fourneaux à fourre, d'environ quatre cents pas; on jette de l'eau dans chaque chaudière jusqu'à ce qu'elle furnage la pierre de trois ou quatre pouces. La chaleur du terrein de cet endroit suffit pour échauffer la matière; cette même chaleur fait monter le thermomètre de M. de Réaumur à 37 degrés & demi au-dessus du terme de congélation, ce qui économise bien du bois; par le moyen de cette diges-
TRA VAUX DES MINES.

La partie saline se dégage de la terre ; on la retire en gros cristaux.

L'alun en cet état est encore chargé de beaucoup d'impuretés ; on le porte au bâtiment qui est à l'entrée de la Solfatare, où on le fait dissoudre avec de l'eau chaude dans un grand vase de pierre qui a la forme d'un entonnoir. On peut d'autant mieux faire ces purifications de l'alun dans cet endroit, que la chaleur naturelle du terrain y tient lieu de bois, ce qui ne coûte par conséquent que la peine.

On peut rapporter à cette espèce d'alun naturel celui qu'on retire par la feuille évaporation, de certaines eaux minérales, & même l'alun de Rome qui se retire d'une espèce de pierre de taille, quoiqu'il lui faille une calcination douce à quatorze heures, & une expédition à l'air pendant laquelle elle tombe en efflorescence. Cette pierre n'est point pyriteuse, c'est plutôt une forte de pierre marneuse ; ainsi son efflorescence n'est vraisemblablement qu'une extinction, & diffère par conséquent essentiellement de l'efflorescence des pyrites. Il est à remarquer au sujet de l'alun, que sa terre, quoique essentiellement argileuse, paroit cependant exiger un certain degré de calcination, & même le concours de l'action des fels alkalis pour former facilement & abandonnament de l'alun avec l'acide vitriolique.

Tels sont les procédés par lesquels on retire le foufre, les vitriols & l'alun des minéraux qui en fournissent ; ces substances, qui contiennent toutes une grande quantité d'acide vitriolique que les chymistes avertent en éparer, sont donc comme les grands magasins où la nature dépose cet acide qui se trouve toujours combiné, comme on le voit, avec quelque substance & engagé dans une base.

Travail des mines en général.

Les mines étant des composés de matières métalliques combinées avec du foufre & de l'arsenic, & de plus entremêlées avec des matières terreuses & pierreuses de différente espèce, tout le but du travail qu'on entreprend sur ces corps composés, consiste à séparer ces différentes substances ; on y parvient par plusieurs opérations fondées sur les propriétés que nous connaissons à ces substances ; nous allons donner une idée générale de ces différentes opérations.

Il s'agit d'abord de débarrasser le vrai minéral d'avec les terres & les pierres accidentelles à la mine ; & lorsque ces corps étrangers sont par grandes masses, & ne font pas intimement mêlés en parties fines avec la mine même, cette séparation s'effectue par des moyens mécaniques ; on doit toujours commencer par faire cette séparation, à moins que cette gangue ne soit de nature à servir de fondant à la mine. Si les terres non métalliques font intimement mêlées avec la mine, alors il faut la concasser & la réduire en petites parties ; cette opération s'effectue à l'aide d'une machine qui fait mouvoir des pilons que l'on appelle bocards ; après cela, lorsque les parties du minéral font plus pestantes que celles de la pierre ou de la terre, on emporte ces dernières en lavant la mine broyée ou bocardée, dans des auge ou canaux, dans lesquels on fait passer de l'eau. Il faut observer par rapport à ce lavage des mines, qu'il ne peut d'abord réusir que quand la matière propre de la mine est sensiblement plus pestante que les matières étrangères ; or le contraire arrive fréquemment, tant parce que le quartz & le faph fur - tout font des pierres naturellement très-pestantes, que parce que les matières métalliques font d'autant plus légeres qu'elles sont combinées avec une plus grande quantité de foufre.

Lorsque la mine a ce caractère, il faut nécessairement commencer par la griller, pour enlever la plus grande partie de son foufre.

Il arrive souvent aussi que les matières pierreuses qui accompagnent la mine, font si dures qu'on aurait beaucoup de peine à la broyer ; dans ce cas on commence par la retirer en tout ou en partie, & on la jette toute rouge dans de l'eau froide qui fait fendre aussi-tôt les pierres, & les rend beaucoup moins difficiles à pulvériser.
TRAVAUX DES MINES.

Ainsi il arrive très-souvent que le grillage est la première opération qu'il faut faire sur une mine.

Lorsque la substance même de la mine est bien fusible, on peut éviter les premières opérations dont nous venons de parler, en commençant d’abord par la fondre sans avoir été grillée, ou du moins après l’avoir été très-legèrement. Car pour cette fonte, "il faut qu’elle confère une certaine quantité de soufre, lequel avec d’autres fonds qu’on ajoute, fera à détruire ou convertir en scories une partie considérable de la matière pierreuse du minerai, & à réduire le reste en un corps aigre & cassant qu’on nomme matte ou pierre, de plomb, de cuivre, suivant la nature de la mine : cette matte est donc une matière moyenne entre le minerai & le métal, & ce dernier s’y trouve concentré & réduit en un moindre volume de matière inutiles qu’il ne T’était dans la mine : mais comme cette matte est toujours sulfurée, le métal qu’elle contient ne peut avoir ses propriétés ; ainsi il faut la griller plusieurs fois pour en faire évaporer le soufre avant que de la refonder, si l’on veut avoir le métal dans un état plus parfait ; cette fonte qui se fait d’une mine non grillée, ou légèrement grillée, se nomme fonte crude."

Il faut observer sur le lavage & sur le grillage, que l’arsenic étant beaucoup plus pénétrant que le soufre, & ayant à peu près la pesanteur métallique, les mines où il domine sont ordinairement très-péantes, & par conséquent susceptibles d’être lavées, ce qui est un avant- age ; mais d’un autre côté, comme l’arsenic est capable de volatiliser, de scories & de détruire entièrement beaucoup de métaux, ces fortes de mines ont du désavantage au grillage & à la fonte, où l’arsenic cause beaucoup de pertes & de déchet. Il y en a même qui, contenant outre cela d’autres demi-métaux volatils, tels que l’animoine & le zinc, font presque intraitsi- bles, & qu’on abandonne pour cette raison : on les nomme mines rapaces. V. MINES VORACES.

Après qu’on s’est débarassé par ces opérations préliminaires, le plus qu’il est possible, des matières étran-
TRAVAUX DES MINES.

& moins abondantes que celles de l'or; mais si l'on en trouvait de cette espèce qui fussent assez riches, on les exploiterait par le mercure exactement de la même manière que les mines d'or natif.

Fonte des mines d'argent.

Comme l'argent, même dans ses mines propres, est toujours allié avec quelques autres métaux dont on a intention de le séparer; après que la mine d'argent est bien grillée, on la mêle toujours avec une quantité de plomb plus ou moins grande pour la fondre.

Le plomb fait fur l'or & fur l'argent, dans la fonte, le même effet que le mercure fait fur ces métaux par sa fluidité naturelle; c'est-à-dire, qu'il s'unira avec eux, & les sépare d'avec les matières non métalliques, qui, comme plus légères, montent toujours à la surface. Mais ce métal a en même temps fur le mercure un avantage très considérable, c'est de procurer par sa vitrification, celle de toutes les substances métalliques qui ne sont point or ou argent; d'où il faut que lorsqu'on a retiré l'or ou l'argent par le mercure, ils restent encore altérés par le mélange des autres matières métalliques avec lesquelles ils étoient alliés; au lieu que, lorsqu'on les a séparés par la fusion & la scorieuse avec le plomb, ils font dans leur état de pureté, & ne peuvent plus être alliés que l'un avec l'autre.

A mesure que le plomb, dans lequel on a fait passer l'or & l'argent d'une mine, se scorie par action du feu, & scorie avec lui les autres matières métalliques; il se sépare des métaux parfaits, & emporte avec lui tous les autres à la surface; il y rencontre les matières non métalliques, qu'il vitrifie aussi, & qu'il convertit en une scorie parfaite, fluide, telle en un mot qu'elle doit être pour que tout ce que ces scories contiennent de métal parfait, s'en écoule exactement.

Quand on s'eft ainsi débarrassé des matières hétérogènes par la scorieuse avec le plomb, on acheve la purification du culot qui contient encore du plomb, par l'opération ordinaire de la coupelle.
TRAVAUX DES MINES

On le fond au bas Hartz en Saxe, dans une espece particulière de fourneau qu'on nomme fourneau à fondre sur ché. La maçonnerie de ce fourneau est en ardoises grossières & épaisse, mais réfractaires & liées avec de l'argile; il a dans œuvre trois pieds & demi de long sur deux pieds de large dans son fond, & seulement un pied dans la partie antérieure; sa hauteur est de neuf pieds huit pouces; il a une fondation de maçonnerie dans la terre, dans laquelle fondation sont pratiqués des canaux pour l'évaporation de l'humidité; ces canaux sont recouverts avec des pierres qu'on nomme pierres de couvercle. La cale qui est établie dessus est formée extérieurement avec des briques revêtues intérieurement de lits d'argile, de mine & de vitriols criblés, & intérieurement d'un lit de poudre de charbon battu, qu'on nomme braque légère; le mur antérieur de ce fourneau est moins épais que les autres, on le nomme chemise. Le mur poiteur, lequel est percé pour donner passage aux tuyères des deux gros soufflets de bois, le nomme le mur mitoyer.

Lorsque le fourneau est ainsi préparé, on y met des charbons dans le creux ou creufet qu'on allume, & on y fait du feu pendant trois heures avant d'y mettre la matière à fondre. On y met ensuite cette matière, qui n'est pas de la mine pure, mais un mélange de cette mine avec plusieurs autres substances, qui toutes peuvent donner un peu de profit; ce mélange est pour une journée, ou pour une fonte qui dure dix-huit heures, de douze schorbens ou mesure de la mine de Ramelsberg bien grillée: le schorben est une mesure qui a dans œuvre deux pieds cinq pouces de long, un pied sept pouces de large, & un peu plus d'un pied de profondeur, ce qui fait trente-deux quintaux du pays, poids de Cologne, à 123 livres le quintal. 2°. Six mesures de scories provenant de la fonte de la mine du haut Hartz, qui font réfractaires, & que les ouvriers nomment froides. 3°. Deux mesures de knobben, qui sont des scories impures (tenant encore du plomb & de l'argent) qu'on a jetées autrefois comme décombres; & qu'on fait ramasser par de vieilles femmes & des enfants. On ajoute encore outre cela plus
TRAVAUX DES MINES.

l'actions des charbons embrasés, portée immédiatement sur le minéral en même temps qu'elle le fond plus promptement & plus efficacement, fourni aux métal le phlogistique dont il a besoin pour être dans son état parfait.

Nous avons dit, à l'occasion des vitriols qu'on retire de la mine de Rammelsberg après son premier grillage, qu'on en obtient aussi un vitriol blanc qu'on prépare à Goslar, & dont la base est du zinc; ce qui prouve que cette mine contient une certaine quantité de ce demi-métal. Comme la fonte de cette mine se fait dans un pays où l'on entend très-bien à tirer d'un minéral tout ce qu'il peut fournir; on retire aussi dans cette fonte le zinc & la cadmier; volc comme on s'y prend pour cela.

Lorsque le fourneau est préparé pour la fonte, comme nous l'avons dit, il faut le fermer par-devant avant de commencer cette fonte.

"On place d'abord une pierre de graiss que l'on bou-

tient à la hauteur de trois pouces; ce graiss est aussi

long que le fourneau est large, & la hauteur est de

niveau avec le trou de la tuyère; on l'affermir des

deux côtés du fourneau en-dehors & en-dehors avec

de l'argile; c'est fur ce graiss que l'on fait l'affiette

du zinc de la manière suivante. On choisit une

pierre "Schütle" plate, ou épece d'ardoise pareil-lement aussi longue que le fourneau est large, &

ayant bous pouces de largeur; on la place sur la

pierre de graiss dont on vient de parler, de façon

qu'elle penche considérablement fur le devant du

fourneau, & qu'elle touche exactement par le bas

c à ce graiss: on l'affermir avec de l'argile, & on met

aussi de la même terre sur l'affiette du zinc. Après

avoir placé fur cette affiette qui doit recevoir le zinc,

deux petits charbons ronds, on pose dessus la pierre

dite "pierre de zinc"; elle environ un pied & demi de

longueur, & elle ferme une partie du devant du

fourneau; on l'affermir aussi des deux côtés avec de

l'argile, & l'on met de la même terre en-dessous

entre les deux charbons, qui empêchent que cette

pierre ne touche à l'affiette du zinc; on ne boucha
TRAVAUX DES MINES.

Tenaîoit beaucoup de zinc, & qu'on s'en servit pour faire le cuivre jaune, on ignora le procédé convenable pour l'en tirer directement, attendu que cette pierre traitée par la fonte avec les flux, comme les autres mines, se fourâmait point de zinc; ce qui vient d'une part de la qualité réfractaire de la terre contenue dans la pierre calamine qui ne peut se fondre que par un feu très-violent; & de l'autre part, de la volatilité & de la combustion du zinc, qui par cette raison ne peut se reflembler au fond du creuset en culot sous les flammes, comme les métaux.

M. Margraf hat remédie à ces inconvénients, en traitant la pierre calamine mêlée avec du cérus, par la distillation dans une cornue à laquelle il adapte un récipient, dans lequel il y a de l'eau, & par conséquent dans les vaissaux clos, où le zinc, à l'aide d'une chaleur très-forte, à la véritable, se sublime sous sa forme métallique, & sans se bruler. Il est parvenu à réduire en zinc, par la même méthode, les fleurs de zinc ou pompollnes, la cadmie des fourneaux, la tuffie qui est aussi une espèce de cadmie, en un mot, toutes les matières propres à produire le zinc par leur combinaison avec le phlogistique. Mais on sent bien que ces fortes opérations sont plutôt propres à servir de preuves à la théorie chymique, qu'à être mises en usage pour des travaux en grand. M. Margraf a observé que le zinc qu'il retire par son procédé, est moins aigre que celui qu'on retire de la fonte des mines; ce qui peut venir, ou de ce qu'il est plus pur, ou de ce qu'il est mieux combiné avec le phlogistique.

Après cette digression que nous venons de faire sur le travail en grand par lequel on retire le zinc & la cadmie, & qu'il aurait été difficile de placer ailleurs, à cause de la relation nécessaire qu'il a avec la fonte de la mine de Rammelsberg, nous allons suivre les autres opérations de cette mine, & revenir à la suite du travail en grand de notre mine de Rammelsberg, c'est-à-dire à l'affinage par le moyen duquel on sépare l'argent d'avec le plomb, qui sont mêlés ensemble, & forment ce qu'on nomme l'œuvre.

Cette opération diffère de l'affinage d'estil, ou en
TRAVAUX DES MINES.

Petit, principalement en ce que dans ce dernier tout la litharge est absorbée dans la couplée, au lieu que dans le premier on retire la plus grande partie de cette litharge.

L'affinage en grand de l'œuvre de Rammelsberg se fait dans un fourneau qu'on nomme fourneau de réverbère. Ce fourneau est construit de manière que la flamme du bois que, l'on met dans un endroit que l'on nomme chauffe, et par un trou que l'on nomme trou à feu, est déterminée par un courant d'air qui s'introduit par le cendrier, et qui sort par une ouverture placée à côté de l'endroit où est l'œuvre, à circuler au-dessus, et à lui donner le degré de chaleur convenable, en menageant considérablement le bois. On dispose dans ce fourneau une grande couplée que l'on nomme cendrée ou têt. On fait cette couplée avec de cendres de bois de hêtre bien levées, suivant la méthode ordinaire; dans quelques fonderies, on y ajoute différentes matières, comme fable, spath, ou gypse calciné, chaux, argile. Quand le têt est bien préparé et fêché, on met l'œuvre tout à la fois sur le têt froid, à la quantité de 64 quintaux pour un seul affinage; on fait alors du feu dans la chaussée avec des fagots, mais on ne presse pas trop la fonte. 1°. Afin que le têt ait le temps de se fêcher. 2°. Parce que l'œuvre de la mine de Rammelsberg est altérée par le mélange de plusieurs matières métalliques qu'il convient d'en séparer, sans quoi elles gâteraient la litharge et le plomb qu'on en retire. Ces matières sont du cuivre, du fer, du zinc et de la matte: comme ces substances hétérogènes sont dures et rebelles, elles ne se fondent pas aussi-tôt que l'œuvre; et dès qu'il est entré en fusion, elles le fumagent en forme de plume ou toile qu'on enlève; ces impuretés se nomment écume ou premier déchet; ce qui en reste forme une seconde écume qui paroit lorsqu'il s'œuvre a un plus grand degré de chaleur; mais avant que la litharge commence à se former, ce font des espèces de fเสories que l'on enlève aussi avec soin: on les nomme seconde déchet.

Quand l'opération est à ce point, on la continue à l'aide des soufflets dont le vent est dirigé, non sur le bois, mais sur la surface même du métal, par des plaques de fer qu'on met exprès devant la tuyère, et qu'on nomme papillons; ce vent sert donc moins à augmenter l'ardeur du feu, qu'à faciliter la combustion du plomb, et à chauffer la litharge vers une échaudure placée au côté opposé de la couplée qu'on nomme voie de la litharge, et par laquelle s'écoule toute celle qui ne peut s'imbiber; elle se fige hors du fourneau; la matière qui se trouve au milieu des plus gros morceaux, et qui en fait environ la moitié ou le tiers, est friable, et se met en poussière comme du sable; on en fait des barriques du poids de cinq quintaux; on la nomme litharge marchande, parce qu'on la vend telle qu'elle est. L'autre partie qui demeure entière, on nomme litharge fraîche, on la refond pour la réduire en plomb; la fonte se nomme fonte fraîche ou rafraîchi, et le plomb qui en provient s'appelle plomb frais, il est bon et de vente lorsqu'il l'œuvre a été bien épuré des matières hétérogènes dont nous avons parlé. À l'égard des têtes ou couplées imprégnées de litharge, on les ajoute dans la fonte même de la mine, ainsi que nous l'avons dit.

Lorsque les deux tiers de l'œuvre ou environ se font converts en litharge, il ne s'en forme plus; l'argent qui s'y trouve, se couvre d'une espèce de peau blanche que les affineurs nomment éclair, et le métal argent éclairé ou argent affiné. L'argent fortant de cet affinage n'est cependant point encore pur; il contient encore du plomb, soulevé jusqu'à quatre gros par marc; on le livre à des ouvriers qui achèvent de le purifier entièrement par la méthode ordinaire, et cette dernière opération est le raffinage; ceux qui la font se nomment raffineurs.

Un affinage de foixante-quatre quintaux d'œuvre rend huit et dix marcs d'argent affiné, trente-cinq à quarante quintaux de litharge, favor, douze à dix huit de litharge marchande, et vingt-deux à vingt-trois de litharge fraîche, vingt et vingt-deux quintaux de têt, et fix à sept quintaux de crafès. L'opération dure seize à dix-huit heures. Il est à observer que dans toutes ces opérations, il y a toujours un déchet plus ou
TRAVAUX DES MINES.

moins considérable fur l'argent, une partie de ce métal passe dans la coupolette, où est retenue dans la lime-tharge. Je suis même très-porté à croire qu'il y a une partie de l'argent qui est calcinée et vérifiée dans la coupolette; et c'est pour cela qu'il est très-avantageux d'employer dans de nouvelles fontes tous les débris de ces affinages et raffinages.

Fonte des mines de cuivre.

La fonte en grand des mines de cuivre, et même de plusieurs autres mines d'argent et de plomb, à l'exception de celle de Rammelsberg, se fait dans des fourneaux qui ne diffèrent essentiellement de celui dont nous avons parlé, que parce qu'auparavant il y avait des scories et du métal dans le fourneau même, ils ont disposé de façon qu'à mesure que la matière est fondue, elle est transportée dans des bassins de réception, dans lesquels on sépare les scories d'avec le métal. Ces fourneaux se nomment en général fourneaux à percée.

Au lieu d'une brasque légère sous laquelle le métal se cache, le bas de ces fourneaux est garni d'un bassin de brasque pesante, qui est un mélange de poudre de charbon et d'argile; il a à la partie antérieure de ces fourneaux, et au bas de la chemise, un trou par lequel s'écoule la matière fondue; il se nomme aél; une rigole nommée trace, cause la fonte dans un ou plusieurs bassins de réception, faits de terre, de scories de fable, etc., dans lesquels se fait la séparation du métal d'avec les scories, en procurant son écoulement dans un autre bassin latéral. Ces fourneaux se nomment aussi fourneaux courbes. Ils prennent différents noms dépendant de quelques différences. On nomme, par exemple, fourneaux à lunettes, ceux qui ont deux yeux et deux traces par lesquels la fonte s'écoule alternativement dans deux bassins. Leur hauteur plus ou moins grande les fait aussi désigner par les noms de fourneaux moyens et de hauts fourneaux.

Les hauts fourneaux sont d'invention moderne; l'utilisation en a été introduite en 1727 à Mansfeld; et s'est répandue presque dans tous les pays où l'on traite des mines, comme en Saxie, en Bohême, en Hongrie, etc. Leur principal avantage est de simplifier et de diminuer le travail, en ce que la mine, au moyen de la grande hauteur du fourneau, y séjourne long-temps avant de descendre jusque dans le foyer; et de se fondre; elle éprouve par conséquent successivement différents degrés de chaleur, et paruit, avant d'être fondu, un rôtiage qui ne coûte rien; aussi les hauts fourneaux n'ont-ils principalement pour les fontes crues; on y a fond sur tout les mines de cuivre en ardoise; ces fourneaux ont plus de dix-huit pieds de hauteur. Il y a cependant un inconvenant à les faire trop hauts; c'est que sans compter la peine que l'on a à les servir et à porter la mine et le charbon mêlé avec la mine, quand ils sont trop hauts, le charbon est presque tout usé quando il partit dans le foyer, et hors d'état de donner une chaleur suffisante.

Tous les fourneaux dont nous avons parlé jusqu'à présent, marchent par le moyen de grands soufflets qui font mus par l'arbre d'une roue qui fait tourner un courant d'eau.

La seule e devise de fourneau à fondre les mines où l'on se paie de soufflets, est celle qu'on appelle fourneau de réverbère; les Allemands l'appellent fourneau à vent; il est connu aussi sous le nom de fourneau anglais, parce qu'on en attribue l'invention à un médecin Anglais fort versé dans la chimie, qui se nommoit Whrigt, et que l'usage en a été d'abord introduit à la fin du dernier siècle en Angleterre, ou l'on s'en fera beaucoup, ainsi que dans plusieurs autres pays, comme à Königsberg, en Norwege.

La longueur de ces fortes de fourneaux est de 18 pieds, en y compréhens la maçonnerie, leur longueur de 12 pieds, et leur hauteur de neuf pieds demis; le foyer est élevé à la hauteur de trois pieds au-dessus du sol de la fonderie. Dans un des côtés est la chaufferie, où l'on place du feu, en ayant un fourneau ou cendrier creusé en terre; de l'autre côté on fait un bassin qu'on entretient couvert de feu lorsqu'il
TRAVAUX DES MINES.

ces dernières fontes sont l'affinage & le raffinage ; il ne contient plus alors que l'or & l'argent, en cas qu'il y en eût dans la mine.

Pour éviter toutes ces fontes, on a imaginé de traiter par la voie humide certaines mines de cuivre, fur tout celles qui font très pyriteuses ; c'est-à-dire, qu'on en fait un vitriol bleu par le grillage & la lessive, qu'on nomme alors eau de cément, & dont on précipite le cuivre pur par l'intermédiaire du fer ; mais cette méthode est peu usitée, parce qu'on a remarqué qu'elle ne fournissait pas tout le cuivre de la mine.

Comme on ne craint point la dépense dans les effets des expériences en petit, on abrège & on facilite beaucoup ces différentes fontes, en ajoutant d'abord des fonds salins & des verres, enfuie en raffinant le cuivre noir avec le plomb dans la croupelle, comme l'or & l'argent ; mais il faut de grandes attentions dans cet affinage pour faire fondre le métal le plus promptement qu'il est possible, & ne lui donner en même temps que le moindre degré de chaleur possible, de peur de le calcerin.

Lorsque le cuivre noir contient du fer, & que ce métal n'est pas en trop grande proportion, le plomb l'en sépare aussi-tôt, & fait monter le fer à la surface ; mais s'il est en très-grande proportion, il empêche le plomb de s'unir avec le cuivre. Ces deux phénomènes dépendent de la même cause, c'est-à-dire de l'impossibilité qu'il y a que le fer & le plomb s'unissent ensemble.

Il n'est pas rare que les mines de cuivre contiennent aussi une quantité d'argent assez considérable pour mériter qu'on en retire par des procédés particuliers. On a été long-temps à en trouver un qui ne fut point trop dispendieux ni trop embarrassant ; on y est enfin parvenu par la belle opération qu'on nomme liquidation, dont j'ai fait un article auquel je renvoie.

A l'égard du cuivre dont on a séparé l'argent par la liquation, comme c'est ordinairement du cuivre noir dont on tire l'argent par ce moyen, il n'est, d'être raffiné après cette opération ; il en aurait même besoin, quand il n'aurait point été cuivre noir avant
TRAVAUX DES MINEES.

son mélange avec le plomb, parce que malgré le refroidissement il retient toujours un peu de plomb, on le porte donc au fourneau à raffiner, où cette opération se fait à l'aide de soufflets dont le vent est dirigé sur la surface du métal fondu. Comme dans ce raffinage du cuivre on ne peut connaitre au juste le temps où il est pur, on attend que le fuseau, qui par son bout d'acier poli, trempé dans le cuivre fondu, indique que ce métal est pur, lorsque la partie qui s'est détachée à ce fer, s'en détache d'elle-même après qu'on l'a trempé dans l'eau.

Quand on apperceoit ce signe, on nettoie bien la surface du cuivre, & dès qu'il commence à se figer, on l'arrosoit par le moyen d'un balai trempé dans l'eau froide; cette eau fait que la surface figée du cuivre se refroidit subitement, se détache; on la laisse avec des tenailles, & on la jette toute rouge dans l'eau froide; en repâtant cette aspirion de l'eau, on retire ainsi tout le cuivre en plaques qu'on nomme rosettes, & ces plaques sont ce qu'on nomme cuivre de rosette.

Nous n'entrerons point dans de plus grands détails sur les travaux en grand qu'on fait sur les différents minéraux, pour ne point passer les bornes prescrites à cet ouvrage. D'ailleurs, ce qui nous resterait à dire sur les mines de mercure, d'antimoine, de bismuth, d'arsenic & de cobalt, ce trouve déjà suffisamment exposé dans les différents articles de ce Dictionnaire relatifs à ces substances & à leurs produits. L'objet de la fonte en grand des mines de fer mériteroit à la vérité d'être traité en particulier avec plus d'étendue, à cause de son importance; mais nous observons que les principes généraux de l'exploitation des mines, contenus dans le présent article, sont applicables aux mines de fer comme aux autres, & nous sommes formés de renvoyer pour les détails particuliers aux bons ouvrages, dont nous ne manquons pas sur cette matière, & en particulier à l'Art des forges & fourneaux à fer, décrit avec la plus grande exactitude par M. le marquis de Courtivron, de l'académie royale des sciences, & par M. Bouchu, correspondant de cette même académie, ouvrage qui fait partie de la Description générale des arts; entreprise par cette illustre compagnie.

TRITURATION. Cette opération, qui n'est qu'une division mécanique des corps, s'exécute par les mêmes moyens que avec les mêmes instruments que toutes les autres divisions de cette espèce; c'est-à-dire, dans les mortiers, sur les pierres à broyer, & dans les moulin. Voyez ce qui est dit à ce sujet à l'article Division. On affecte aussi ordinairement le nom de trituration à la division que l'on fait de plusieurs corps ensemble, pour les unir les uns avec les autres, comme par exemple, dans l'extinction du mercure, dans l'opération de l'éthiops minéral, & autres de cette espèce.

TERRÉFACTION. C'est un des noms qu'on donne à l'espèce de calcination par laquelle on enlève les substances minéralisantes volatiles, telles que le soufre & l'arsenic, contenus dans les minéraux métalliques. On donne aussi le même nom au rôtissement de quelques médicaments dans la pharmacie; on dit, par exemple, la rubarbe terréfiée, &c.

TURBITH MINÉRAL. On a donné ce nom à une préparation de mercure que l'on fait de la manière suivante. On prend la quantité qu'on veut de mercure, on le met dans une casserole de verre, on verre par-dessus son poids égal d'acide vitriolique concentré, on une plus grande quantité, suivant le degré de concentration de cet acide, & l'on distille au feu de fable; jusqu'à ce qu'il ne reste plus dans la casserole qu'une substance seche ressemblant à une matière saline. Cette matière est une combinaison du mercure avec l'acide vitriolique; l'union directe de ces deux substances ne peut se faire que par le procédé qu'on vient d'indiquer, parce que l'acide vitriolique ne peut attaquer le mercure qu'autant qu'il est dans la plus grande concentration, & que, lorsqu'il est libre, il ne peut se concentrer ainsi que dans les vaisseaux clos. Voyez Concentration. D'ailleurs, la chaleur qu'il éprouve dans cette opération, favorise aussi beaucoup son ac-
TURBITH MINÉRAL.

La parôle jaune qu'autant qu'il est dépouillé d'acide vitriolique, & qu'il faut pour cela le laver dans une suffisante quantité d'eau chaude, sans quoi il restera blanc. En général, plus il est exactement dépouillé d'acide, plus il devient jaune.

Le turbith minéral a été autrefois fort en vogue pour la guérison des maladies vénériennes ; mais à présent on s'en sert fort peu, parce qu'on a trouvé des préparations de mercure qui lui sont préférables : telles que le MERCURE DOUX, la PANACEE MERCURIU, & autres.

Il est bon de savoir aussi, que le turbith minéral ne

paroit