AFFINAGE.

donner le degré de chaleur convenable : c’est un courant d’air qui donne cette direction à la flamme ; cet air s’introduit par le cendrier ; & fort par une ouverture pratiquée à côté de l’endroit où est l’œuvre. Cette manière de diriger ainsi la flamme ménage aussi beaucoup le bois.

On dispose dans ce fourneau une grande coupelle, qu’on nomme cendrée ou teint. On fait cette coupelle avec des cendres de bois de hêtre bien lessivées, pour en emporter le sel, suivant la méthode ordinaire. Dans quelques fonderies on ajoute aux cendres différentes matières, comme du fable, de la chaux, de l’argille, du spath ou gypse calciné ; il est bon d’observer, au sujet de ces additions, qu’elles feraient très-mauvaises & ne manqueraient pas de faire fondre la coupelle, si ce vaisseau devait supporter une chaleur très-forte ; mais celle qui convient pour l’affinage ne doit être que médiocre. Voyez-au mot Essai les inconvenients & les signes d’une chaleur trop forte pour l’affinage.

Quand le teint est bien préparé & séché, on met dans tout l’œuvre à la fois ; cet œuvre est ordinairement de soixante & quatre quintaux pour un seul affinage : on fait alors du feu dans la chaufferie avec des fagots, mais on ne presse pas trop la fonte ; premièrement, afin que le teint ait le temps de se dresser à fond, ce qui est très-efficace ; attendu que s’il refroidit de l’humidité lorsqu’il se ferait fondu, il se ferait sauter avec explosion ; secondelement, parce que l’œuvre de la mine de Ramelsberg, & celui de la plupart des autres, est altérée par le mélange de plusieurs matières métalliques, qu’il convient de séparer, du moins pour la plus grande partie ; sans quoi elles gâteraient la litharge, & donneraient une mauvaise qualité au plomb qu’on retire ensuite de cette litharge. Ces matières étrangères qui se trouvent dans l’œuvre de Ramelsberg, font du cuivre, du fer & de la matte. Comme ces substances sont dures & rebelles, elles ne se fondent pas aussitôt que l’œuvre, attendu que la chaleur est mélangée ; & d’ailleurs ces mêmes matières étant spécifiq,
dans les coupelles, dans les affinages en grand & même en petit, suivant l'observation de M. Tillet.

Loftique les deux tiers de l'oeuvre, ou environ, se sont convertis en litharge, il ne s'en forme plus; l'argent qui s'y trouve se couvre d'une espece de peau blanche, que les affineurs nomment éclair; & ils appellent le metal, argent éclairé ou argent affiné. L'argent fortant de cet affinage n'est cependant point encore pur; il contient du plomb, souvent même jusqu'à quatre gros par marc: on le livre à des ouvriers qui veulent deviner si le purifier entièrement par la méthode ordinaire, c'est-à-dire, apparentement par une seconde coupellation à un feu plus fort; & cette dernière purification est le raffinage: ceux qui la font le nomment raffineurs. C'est sans doute imprévement que les ouvriers, qui font cette première partie de l'affinage en grand, donnent le nom d'éclair à la peau blanche qui le forme à la surface de l'argent, parvenu jusqu'à un certain degré de fin, mais qui ne l'ait pas encore entièrement; car il est certain que dans les effais, l'éclair ou la corrufcation dont on a parlé plus haut, ne paroit que quand l'argent est absolument fin; ou du moins aussi fin qu'il peut le devenir par la coupellation.

Un affinage de foixante & quatre quintaux d'oeuvre de Ramelsberg rend huit à dix marcs d'argent affiné, trente-cinq à quarante quintaux de litharge; savoy, douze à dix-huit de litharge marchande, vingt-deux à vingt-trois de litharge fraîche, vingt à vingt-deux quintaux de tefts, & fix à sept quintaux de craffes; l'opération dure seize à dix-huit heures.

Si l'argent qu'on a ainsi affiné est allié d'or, il en contient encore la même quantité après l'affinage; & si cette quantité d'or en vaut la peine, on peut le séparer par le départ.

Les manœuvres pour l'affinage de l'or par la coupelle sont absolument les mêmes que celles de l'argent. Si l'or qu'on affine contient de l'argent, cet argent refite aussi avec lui après l'affinage dans la même proportion, parce que ces deux métaux résistent aussi bien l'un que

AFFINAGE.

l'autre à l'action du plomb, on doit alors séparer cet argent d'avec l'or, aussi par l'opération du départ.

AFFINAGE. On doit entendre par affinité la tendance qu'ont les parties, soit constituantes, soit intégrantes des corps, les unes vers les autres & la force qui les fait adhérer ensemble lorsqu'elles sont unies.

La seule définition de l'affinité fait connoître que ce n'est point là un de ces mots vuides de sens qui ne présentent aucune idée. La force avec laquelle les parties des corps tendent à s'unir les unes aux autres, & l'adhérence qu'elles ont entre elles, font des effets très-sensibles & très-palpables, puisque cette force ne peut être détruite que par une force tout aussi réelle & plus considérable. Elle est d'ailleurs démontrée par une infinité d'expériences, comme, par exemple, par l'adhérence qu'ont ensemble deux corps appliqués l'un sur l'autre par des surfaces très-polies; la tendance qu'ont l'une vers l'autre deux gouttes d'eau, d'hüile, de mercure, ou de quelqu'autre fluide, placées l'une auprès de l'autre, qui se conffondent aussitôt ensemble, & se réunissent en une seule maffe; la force convexe ou sphérique qu'affectent les gouttes des différents fluides quand elles sont isolées ou supportées par un corps avec lequel elles ne sont point dispersées à s'unir; effets qui ont lieu même dans le vuiffe, & qui démontrent l'affinité qu'ont entre elles les parties intégrantes des corps, tant solides que fluides.

L'affinité des parties principes ou constituantes est démontrée par le détail de tous les phénomènes de la chymie.

On ne recherche point ici la caufe de ce grand effet, qui est si général, qu'il peut être regardé lui-même comme caufe de toutes les combinaisons, & servir à en rendre raison. Il est peut-être une propriété aussi essentielle de la matière que son étendue et son impénétrabilité, & dont on ne peut pas dire autre chose, sinon qu'elle est ainsi. On peut consulter à ce sujet les ouvrages de Newton, de Friend & de Keîl, qui ont essayé de porter la lumière du calcul sur ces objets obscurs. On se contente de faire observer les principales
AFFINITÉ.

Lois que suivent les principes des corps dans leurs différentes unions & combinaisons en vertu de cette propriété.

Je crois qu'on peut distinguer plusieurs sortes d'affinités ; non que je pense qu'il y en ait réellement de plusieurs espèces, car il est bien certain que ce n'est toujours qu'une feuille & même propriété de la matière qui le modifie diversement suivant les diverses circonstances (a), mais seulement afin de pouvoir faire remarquer les phénomènes qu'elle présente dans le détail des combinaisons & des séparations qu'elle occasionne dans les opérations les plus générales & les plus importantes de la chimie.

Je nomme affinité simple, la disposition qu'ont à s'unir & à adhérer ensemble les parties intégrantes & homogènes d'un même corps, ou les parties de deux corps différents, & par conséquent hétérogènes, ce qui la divise en deux espèces.

(a) Je ne crois pas qu'on puisse exprimer d'une manière plus claire & plus précise, qu'il n'y a point de petites loix particulières pour les affinités, mais qu'au contraire elles ne sont toutes que les effets d'une seule & même loi des plus grandes & des plus générales qu'on ait observées jusqu'à présent dans la nature : je veux dire de celle, selon laquelle toutes les parties de la matière tendent les unes vers les autres ; & l'on peut facilement en faire les articles pesanteur, résistances, & beaucoup d'autres, que ce sont, en définitive, à descendre à des loix particulières d'affinité qu'il y a de cas particuliers dans ces unions & séparations, & qui aient été rapportés à autant de petites loix particulières d'affinité, que ce soit par la suite de leurs petits loix d'affinité. Mais ce qu'il y a de certain, c'est que m'étant exprimé dès 1755, comme on le voit par les paroles du futur de ces loix, je fais cette note, & auxquelles je n'ai rien changé dans cette nouvelle édition, cette animadversion, faite en 1755, ne peut me concerner ; & j'ai tout lieu de m'en féliciter ; car M. de Buffon est un des hommes du monde dont j'ambitionne le plus de mériter & d'obtenir
AFFINITÉ

celles d'un autre corps, qu'elles auront été plus écartées par cette division mécanique.

4. Les différents corps étant plus ou moins susceptibles d'éprouver, soit par les opérations de l'art, soit par celles de la nature, divers degrés de cette division mécanique qui sépare des unes des autres leurs parties intégrantes, devraient avoir plus ou moins de facilité à former des combinaisons avec d'autres corps.

5. Cette facilité qu'ils ont à s'unir avec un autre corps par une affinité de composition, ne consiste cependant pas seule le degré d'affinité qu'ils ont avec ce même corps. Car l'expérience démontre que des principes ou parties constituant des certains composés qui s'unissent ensemble avec beaucoup de promptitude et de facilité, n'ont cependant qu'une adhérence très-foible, et qui cede au moindre effort de l'analyse ou décomposition chimique; tandis que d'autres qui ne peuvent s'unir que très-difficilement, et par des moyens recherchés, contractent ensemble une union infiniment plus forte, et résistent beaucoup plus à la décomposition. Le mercure, par exemple, s'unit bien plus facilement avec l'acide nitreux qu'avec l'acide marin; et cependant il a beaucoup plus d'adhérence avec ce dernier acide qu'avec le premier.

On doit conclure de là qu'il ne faut pas décider absolument qu'un corps n'a aucune affinité avec un autre corps, parce qu'on ne connait aucun moyen de les unir. Il parait certain au contraire, que tous les corps de la nature ont les uns avec les autres un certain degré d'affinité, de facilité à s'unir, un certain degré d'adhérence lors qu'ils sont unis, et que par conséquent il n'y a point de combinaisons qui soient réellement & absolument impossibles, mais que ce degré d'affinité varie suivant les différents corps en ces corps se trouvent.

Cependant, comme le défaut d'union de la part de deux corps empêche réellement l'affinité qu'ils ont entre eux de pouvoir se manifester, en attendant que la chimie puisse faire les combinaisons qui paroissent actuellement impossibles, nous pouvons regarder les corps qu'ils réfusent à ces combinaisons comme n'ayant pas d'affinité.

AFFINITÉ

point d'affinité les uns avec les autres. Ainsi, par exemple, on dit que l'huile n'a point d'affinité avec l'eau, le plomb avec le fer, le fer avec le mercure, parce qu'effectivement ces corps ne s'unissent directement les uns avec les autres dans les opérations ordinaires de la chimie; ainsi l'affinité qu'ils peuvent avoir entre eux demeure de nil effet par rapport à nous.

Au contraire, les affinités des corps qui s'unissent, produisant dans les opérations chimiques des effets proportionnés à la facilité avec laquelle ils s'unissent, & à la force de l'adhérence avec laquelle ils s'élèvent unis, on peut regarder l'affinité des corps en général comme étant en raison composée de ces deux propriétés.

La dernière remarque qu'on peut faire sur l'affinité simple de composition, fournit une loi fondamentale très-générale & d'un très-grand usage, pour reconnaître, même sans décomposition, les principes dont les corps sont composés. Volci cette remarque; c'est que tous les corps composés ont des propriétés qui participent de celles des principes dont ils sont composés. Ainsi, par exemple, l'union de deux principes, dont l'un est fixe & l'autre volatile, forme un composé qui a un degré de fixité ou de volatilité moyen entre celles de ses principes.

Il en est de même de toutes les autres propriétés; telles que la pesanteur, l'opacité, la transparence, la ductilité, la dureté, la fluidité, &c., & même des affinités; en sorte que, non seuls qu'on connaisse parfaitement les propriétés des principes d'un composé, on pourra, en examinant les propriétés de ce composé, reconnaître quels sont ses principes, quand même l'analyse en feroit impossible.

Il faut pourtant souhaiter que cette règle, quoiqu'affaire générale, est sujette à un très-grand nombre de restrictions & de modifications, qui dépendent d'une infinité de circonstances particulières, & fur-tout de la perte ou du changement des propriétés que les corps combinés ne doivent qu'à leur agglomération, avant la combinaison. Par exemple, il arrive quelquefois que...
AFFINITÉ.

l'opération par laquelle deux principes sont unis, altere ou même fait disparoir entièrement quelques-unes des propriétés de ces principes, ou bien que leur union en développe de nouvelles qu'on n'apperçoit point d'abord dans aucun de ces principes, mais ces changemens qui ne dépendent que de l'agraction, ne sont ordinairement pas aifez complets pour faire entièrement méconnoître les principes. Ainsi ils n'empêchent point que la règle ne demeure aifez générale pour être un excellent guide dans bien des recherches chimiques.

On peut nommer affinité compliquée celle dans laquelle il y a plus de deux corps qui agissent l'un fur l'autre; & il résulte de cette définition que ces fortes d'affinités ne peuvent être que du genre de celle que l'on a nommée affinité de composition.

On doit considérer d'abord l'affinité compliquée, dans laquelle il ne s'agit que de trois principes. Voici ce que l'expérience indique au sujet de cette forte d'affinité.

Lorsque deux principes forment ensemble, s'il en survient un troisième, on voit paroître des phénomènes de composition ou de décomposition, qui différentes suivant les affinités qu'ont ensemble ces trois corps.

1. Quelquefois le troisième principe qui survient s'unit avec les deux autres, & ils forment ensemble un composé qui a trois principes. Par exemple, si dans une matière composée de l'or & de l'argent on ajoute du cuivre, ce troisième métal s'unit avec les deux autres, & il en résulte un corps composé qui a trois principes;

2. La même chose arrive aussi quelquefois, qu'elle le troisième principe qui survient n'a aucune affinité avec l'un des deux principes qui étoient d'abord unis. Mais alors il paraît qu'il faut que ce principe survivant ait avec l'autre principe une affinité égale à celle que ces deux principes ont ensemble; & dans ce cas celui des deux principes qui fût comme de lien pour unit ensemble

AFFINITÉ.

ensemble les deux qui n'aurioient pas pu l'être sans cela, s'appelle intermede. Ainsi on peut nommer cette affinité, affinité d'intermede. Par exemple, si l'on met dans l'eau un composé nommé foi de soufre, qui a pour ses deux principes le fouvre & l'alkali fixe, il contracte une union avec l'eau, il s'y diffout sans se décomposer, & il en résulte un nouveau composé qui a trois principes, savoir, le fouvre, le sel alkali fixe & l'eau. L'eau & le fouvre seul ne peuvent contracter ensemble aucune union; mais comme le sel alkali fixe a une affez grande infinité, tant avec l'eau qu'avec le fouvre, il ferto dans cette occasion d'intermede pour unir l'eau avec le fouvre. Il faut remarquer que dans cette affinité d'intermede, l'affinité du principe qui ferto d'intermede s'affoiblit, parce qu'elle se partage entre deux corps, & que l'union qu'il contracte avec eux est moins forte que s'il n'étoit uni qu'à l'un des deux.

3. Quelquefois un troisième principe, qui se joint à un composé de deux principes, ne s'unit qu'avec un de ces deux principes, & oblige l'autre à se séparer entièrement de celui avec lequel il s'étoit d'abord uni. Dans ce cas, il se fait une décomposition totale du premier composé & une nouvelle combinaison du principe restant avec le principe survivant, d'où résulte un nouveau composé. Cela arrive lorsque le principe survivant n'a que très-peu ou même point d'affinité avec un des principes du composé, & qu'il en a avec l'autre une beaucoup supérieure à celle qu'on enребboit ces deux premiers principes. Par exemple, lorsqu'on mêle de l'alkali dans une dilution de matière métallique faite par un acide, l'alkali qui a beaucoup plus d'affinité avec l'acide qu'avec le métal, s'empare de cet acide, & l'oblige à quitter le métal qui se précipite, parce que ce dernier de fon côté a beaucoup moins d'affinité avec l'acide, que n'en a le sel alkali avec ce même acide.

4. Il arrive quelquefois qu'un principe qui, en vertu de l'affinité dont on vient de parler, a été séparé d'avec un autre, fait quitter prisé à son tour à celui qui l'avait

Tome I.
AFFINITÉ.

Separé. Cette affinité, que l'on nomme réciproque, à cause de la réciprocité de ses effets, a lieu lorsque les deux principes, qui sont séparés alternativement l'un par l'autre d'un troisième principe, ont avec ce principe une affinité presque égale, et que leur séparation est procurée par des circonstances particulières de l'opération, et relatives à quelques-unes de leurs propriétés.

Tout ce qu'on vient de dire sur les affinités de trois principes doit s'appliquer à celles de quatre, en ayant égard aux changements que peut apporter un quatrième principe. Il est évident, par exemple, qu'au lieu d'une seule décomposition et d'une seule composition nouvelle qui peuvent résulter des différents degrés d'affinité de trois principes, les affinités de quatre principes formant deux nouveaux composés, pourront, par un échange mutuel, occasionner deux décompositions et deux combinaisons nouvelles. Cela arrive toutes les fois que la somme des affinités, que chacun des principes des deux composés avec les principes de l'autre, surpasser celle des affinités qu'ont entre eux les principes qui forment les deux premiers composés. Cette force d'affinité où il se fait un double échange de principes, peut se nommer affinité double. Les exemples de ces fortes affinités se rencontrent très fréquemment dans les opérations et dans les mélange de chimiens. Elles sont d'autant plus essentielles à remarquer, qu'il serait impossible d'expliquer sans elles plusieurs phénomènes singuliers de décomposition. Par exemple, il arrive très-fouvent que deux principes dont ni l'un ni l'autre ne pourrait opérer, tant qu'il serait seul, la décomposition des principes d'un composé, parce que leurs affinités séparées sont inférieures à celle qu'ont ensemble les principes du composé qu'il s'agit de séparer, deviennent cependant capables de procurer cette décomposition lorsqu'ils agissent concurremment. Il suffit pour cela, comme nous l'avons dit, que la somme des affinités qu'ont avec les principes du corps à décomposer les deux principes décomposés, surpassant la somme des affinités qu'ont ensemble les principes de
quelques propositions qui ne font point entièrement justes à cause de leur trop grande généralité. On a reconnu ces défauts à mesure que la chymie a fait des progrès; & plusieurs excellents chymistes, tels que MM. Rouelle, Gellert & autres, ont augmenté & rectifié la table de M. Geoffroi d'après les nouvelles découvertes.

Il est bien aisé de sentir les avantages qu'on peut tirer de ces sortes de tables, puisqu'elles font le précieux le plus court de l'état actuel de nos connaissances en chymie. Mais en même temps j'avoue que je crois qu'il est très-difficile de leur donner toute la justesse qu'on peut désirer; & j'en suis si convaincu, que connaissant mes forces, je me suis abstenu d'en faire, & que je m'en abstiendrai toujours. Cela ne m'empêche pourtant pas d'en sentir moi-même toute l'utilité, de respecter les savans estimables qui les ont inventées ou qui les perfectionnent, de souhaiter qu'elles acquièrent toute la justesse désirée, & d'être même très-perplexe qu'elles s'approcheront d'autant plus de la perfection, que la chymie expérimentale fera elle-même plus de progrès; enfin que si, par impossibilité, cette science vraiment inépuisable étoit jamais épuisée, les tables des combinaisons & des décompositions feroient nécessairement alors au plus haut point de perfection. Si donc ces sortes de tables n'ont point pour le présent & font dénaturés à n'avoir peut-être jamais toute la généralité & toute la justesse possible, la seule conséquence qu'un bon esprit en puisse tirer, c'est que la chymie est encore à une distance immense de son point de perfection, & non pas que les tables des différents ordres d'affinités soient mal imaginées, inutiles ou dangereuses; & je ne crois pas qu'aucun chymiste vraiment digne de ce nom, puisse penser autrement.

A la vérité, feu M. Baron, qui avec du mérite avoit aussi de l'humeur, ou affectait d'en avoir, s'est efforcé dans plusieurs endroits de ses notes sur la chymie de Lemeri, de combattre ce qu'il appelloit la doctrine des affinités, & en des termes aifez durs pour donner lieu de présumer qu'il étoit affecté de la ma-

heureuse envie de faire une fenfation, en censurant sans menagement des opinions acredées, & en manquant aux égards qu'il do a des savans respectables qui l'avoient précédé. Mais s'il avoit à être copié, doivoit-on s'attendre que ce feroit justement sur le feu de l'objet qui puisse rirner fa gloire, & qu'on liroit dans un ouvrage imprimé en 1775, que le siime des affinités est une belle chimere, plus propre à amuser nos chymistes scholastiques qu'à avancer cette science; & ailleurs, nos raifonnements, nos falsifieurs de tables, &c. expreffions qui, quand même l'auteur avoit raison pour le fond, feroient malhonnêtes, en ce qu'elles ne peuvent s'appliquer qu'aux hommes les plus illusfres & les plus estimables que nous ayons eus jusq'à prêter en physique & en chymie; je remarquerai feulement ici, puisqu'il l'occasion s'en présente, que les affinités plus ou moins grandes des différentes substances qui agissent les unes sur les autres, font des choses de fait & d'expérience auxquelles on ne peut pas donner le nom de syème, parce qu'en physique, ce nom ne peut s'appliquer qu'à des raifonnemens & à des conjectures, & point du tout à des faits. D'ailleurs quels peuvent être les chymistes que l'auteur a voulu désigner par l'épithète méprifante de Œholaftiques? J'avoue pour moi que je n'en connais aucun, même parmi les plus déraisonnables, auquel ce nom de Œholaftique peut être donné avec le moindre fondement.

Comme il y a tout lieu de croire que notre auteur s'est servi de cette expression sans l'entendre, & que cela pourrait faire croire à ceux qui ne font pas au fait de l'histoire, ni de l'état actuel de la chymie, qu'il y a une chymie scholastique, comme il y a ou qu'il y a eu une philosophie scholastique; je crois devoir expliquer ici la véritable signification de cet adjectif; il ne m'賽ra pas difficile de prouver qu'il est tout-à-fait impropre relativement à la chymie, à quelqu'âge qu'on la prenne & sous quelqu'aspect qu'on l'envisage; qu'enfin on ne peut donner cette épithète de Œholaftique à aucune espèce de chymie ou de chymistes, sans faire un contre-lens manifeste.
AFFINITÉ.
Tout le monde fait en effet que ce terme de scholastique n’a été imaginé que depuis Descartes dans les temps du renouvellement des sciences, et pour désigner d’une manière méprisante ce qu’on appelle la philosophie de l’école : or quelle était cette philosophie de l’école? C’était celle d’Aristote, de ses nombreux sectateurs ; elle était en possession de toutes les écoles depuis plus de quinze siècles, à l’exclusion de toute autre, et méritait par là à bien juste titre le nom qu’on lui avait donné. Tous ceux qui ont quelques notions sur l’histoire des études & des connaissances humaines, savent jusqu’à quel point on a cru porté dans les écoles peripatéticiennes l’abus de ce que l’on nomme l’autorité du maître. Un passage d’Aristote ou de quelqu’un de fes plus fameux commentateurs, décide tout dans les questions les plus difficiles ; un jargon composé de mots barbares, qui n’avoient point de sens, ou qui ne servoient qu’à exprimer des idées abstraites & vagues, formoit la logique & la métaphysique de l’école, & les subtilités de ces deux derniers faisoient même tout le fond d’une physique auffi remplie de chimeres que dénuée d’expériences.
Telle étoit cette philosophie magistrale qu’on a abandonnée, quand après un règne de plus de quinze cents ans on a enfin reconnu qu’elle ne servoit qu’à fatiguer & à gâter l’esprit par des disputes de mots fans rien apprendre, qu’elle étoit devenue ridicule pour avoir été trop respectée ; & le nom de philosophie scholastique qu’on lui a affecté, servoit autant à s’en moquer qu’à la distinguer de celle dont Descartes, Newton, Leibnitz, Pascal, Boyle, Locke, Stahl, Boerhaave, & d’autres hommes de cet ordre devenoient alors les fondateurs.
Après cette explication établie sur des faits encore récents & très-connus de tous les gens qui ont eu quelqu’éducation, je ne crois pas qu’il puisse rester la moindre incertitude sur la véritable signification du nom abjectif scholastique, en tant qu’il peut être appliqué à une doctrine quelconque ; il est bien évident qu’il ne peut convenir rigoureusement qu’à la philo-

A F F I N I T É.
Sophie péripatéticienne qui a dominé dans les écoles pendant si long-temps, ou tout au plus par extension à quelqu’autre système de connaissances humaines qui auraient les mêmes défauts & mériterait les mêmes reproches. Il s’agit donc de savoir si aucune espèce de chimie a jamais été dans ce cas ; certainement il n’y en a jamais eu de telle, & je ne crois pas que que ce fait puisse en citer une pareille. Il suffit, pour en être convaincu, de connaître même très superficiellement l’histoire de l’origine & des progrès de la chimie ; sur quoi je renvoie aux ouvrages qui ont été faits sur cet objet, & en particulier au discours historique qui est à la tête de ce livre. On y verra qu’avant l’époque du renouvellement des sciences, la chimie n’existoit réellement point ; qu’il n’y avait aucun système, aucun corps de doctrine chimique qui fût ou qui pût même être enseigné dans les universités ; que cette partie de la physique, quoiqu’une des plus étendues & des plus essentielles, eût entièrement inconnue aux savans, aux philosophes, ou à ceux qui en tenoient lieu ; que celle que nous commençons à connaitre & à parler, comme le dit très-bien M. le comte de Buffon, est encore dans son berceau, est née presque de nos jours, & précisément dans le temps où la philosophie & l’enseignement scholastiques devenoient ridicules & tombaient dans le discrédit. A quelle espèce de chimie voudroit-on donc donner l’épithète de scholastique? Avant la chute de la philosophie péripatéticienne, il n’y avait point d’autre chimie que celle des adeptes & chercheurs de pierre phosphale, & celle des ouvriers qui exerçoient les arts chimiques. Les alchimistes avaient à la vérité & ont encore leur jargon barbare, comme les peripatéticiens ; mais à cela près, ils n’ont affublément jamais eu aucun caractère de scholasticité. Leurs doctri
de, si tant est qu’ils en aient une, n’a jamais été enseignée dans aucune école : au contraire, loin de la divulguer, ils la cachent avec le plus grand soin sous des emblèmes & des énigmes dont il n’y a que les initiés qui aient le mot ; & d’ailleurs, s’ils

F. iv
AFFINITÉ.
que ce soient des raisonnements en l'air & fondés sur rien, comme ceux des philosophes de l'école; car il suffit d'ouvrir leurs livres pour voir que ces pauvres gens font peut-être les plus laborieux de tous les hommes en fait d'expériences. Personne ne s'avisera non plus, je crois, de taxer les fondateurs, les verriers, les orfevres, les métallurgistes, les teinturiers, ni aucun des autres ouvriers qui exercent des arts chimiques, d'avoir une doctrine scholastique, puisque tous ces gens ne fuient que leur routine, & n'ont ni théorie ni doctrine d'aucune espèce.

Reflet donc, si l'on veut absolument qu'il y ait une doctrine scholastique en chimie, que ce soit celle des chymistes-physiciens, qui depuis qu'on a commencé à bien observer la nature & à l'interroger par la voie de l'expérience, ont recueilli toutes celles qu'ils ont trouvées faites par les chymistes; & les ouvriers y ont ajouté les leurs propres, & ont lié toutes ces connaissances précieuses avec les grands principes & les vérités nouvelles que la physique moderne vœu de faire découvrir. Mais, je le demande à tout homme instruit, capable d'entendre les ouvrages de *Stahl*, de *Boerhaave*, & autres de cet ordre, & qui me sera donné la peine de les lire, est-il possible d'y trouver la moindre ressemblance avec la doctrine & le langage de l'école ? Ces grands hommes n'ont-ils pas rejeté au contraire avec le plus grand soin toutes les expressions barbares & scientifiques? ont-ils jamais fait aucun raisonnement ou proposé aucune théorie qui ne fût fondée sur des faits bien constatés, & plus encore sur les belles & nombreuses expériences qu'ils n'ont jamais cessé de faire eux-mêmes? La doctrine d'aucun de ces chymistes-physiciens est-elle devenue dominante, & a-t-elle jamais été enseignée magistrallement & exclusivement dans aucune université, dans aucune école publique? Parmi ceux qui les ont suivis & qui ont embrassé & défendu leurs sentimens en tout ou en partie, s'est-il trouvé un seul docteur dogmatifiant & qui n'ait apporté d'autre preuve de ce qu'il avançait que la citation des paroles & l'autorité du maître?
AFFINITÉ.
expressions semblables, où il n'y a ni jutteffe ni esprit ; & qu'ils répètent à chaque page.
En faisant ces observations que les circonstances ont rendu indispensables, je suis bien éloigné de vouloir diminuer en rien la justesse que l'on doit à des travailleurs zélés & intelligents, auxquels la chimie a les plus grandes obligations, quoiqu'ils s'abstiennent de raisonner d'après leurs expériences & de les faire servir de base à aucune théorie ; au contraire, c'est peut-être par cela même qu'ils méritent le plus d'éloges : on les trouve bien, en l'issant & en méditant leurs ouvrages, que s'ils ne font ou ne paroissent que pratiques, c'est parce qu'un doute philosophique les retient, ou parce que la tournure de leur esprit ne les porte point à de plus hautes spéculations ; mais on découvre en même temps qu'ils sont aux moins très-capables d'entendre les théories des hommes de génie qui les ont précédés, & que loin de les mépriser ils les prênnent réellement pour guides de leurs recherches. Il feroit d'autant plus injuste de confondre ces excellents chimistes avec de simples manipulateurs, qu'aux qualités estimables dont on vient de parler, ils joignent encore la plus belle de toutes celles qui caractérisent les vrais savans, la modéstie ; & leur rôle est d'autant plus agréable & plus sûr, que laissant à d'autres la fonction dangereuse de comparer les faits & d'en tirer des résultats généraux, ils sont à l'abri des erreurs auxquelles il faut convenir que ces derniers sont exposés, quels que soient leurs talens & leur génie.
Mon intention en faisant sentir le mot du chimiste dont je me suis vu obligé de relever les expressions, n'est pas non plus à beaucoup près de lui imputer tous les sentiments bas qu'elles semblent annoncer. On ne doit pénétrer dans l'intérieur de personne ; j'ai voulu seulement repousser des injures dites en général & sans fumer les beaux génies & aux savans les plus estimables qui se sont occupés de la chimie depuis le renouvellement des sciences, & faire observer à cet auteur que si fon but n'a pas été d'inférer gratuitement tous ceux qui ont donné jusqu'à présent quelqu'atten-

AGRÉGATION.
...tion à la théorie de la chymie, comme je veux le croire, la manière dont il s'est exprimé à leur sujet est cepen-
dant exactement la même que s'il ait réellement la grossièreté & la façon de penser de certaines gens, qui, faute d'éducation & d'esprit, sont incapables de raifonner, & propres tout au plus à manœuvrer ; c'est au contraire parce qu'elle croit que ce chimiste peut s'élever au-dessus de cette basse classe, & en général pour le bien de la chimie, que j'ai eu devoir de faire sentir les inconvénients d'un langage que ceux dont on parle ne doivent point souffrir, & qui ne peut que déshonorer ceux qui les tiennent, par la raison que ce n'est jamais en déguisant & en méprisant le mérite d'autrui qu'on prouve qu'on en a foi-même : au con-
tillaume, on a toujours vu que les hommes qui ont le plus d'esprit & le savoir, sont les premiers à recon-
noître & à louer ces belles qualités dans les autres.

AGRÉGATION. Pour avoir une idée nette de ce que les chimistes entendent par les mots d'AGRÉGATION, d'AGRÉGAT, d'AGRÉGÉS ou de CORPS AGRÉGÉS, il faut faire attention à la différence qu'il y a entre ce que les physiciens nomment parties constitutantes & parties intégrantes, ou agrégatives des corps. Les parties constitutantes font, à proprement parler, les prin-
cipes des corps ; ce sont des substantes de nature diffé-
rente, qui par leur union & leur combinaison mutuelle, constituent réellement les corps mixtes, lesquels parti-
cipent des propriétés de leurs parties constitutantes. Par exemple, les parties constitutantes du sel commun sont l'acide & l'alkali dont ce sel est composé, & qu'on doit regarder comme ses principes, du moins comme ses principes prochains. Cet acide & cet alkali étant ces qui constituent réellement le sel marin & les parties à la réu-
nion desquelles il doit son état & ses propriétés, il est clair qu'on ne peut définir ou séparer les unes des au-
tres ces parties constitutantes, sans le détruire & le de-
composser ; enfin qu'après cette séparation, ce ne fera plus du sel commun qui existera, mais seulement l'acide & l'alkali de ce sel, qui font des choses bien différentes de ce même sel & l'une de l'autre.
AGRÉGATION.

Au contraire, les parties intégrantes des corps ne diffèrent entr'elles absolument en rien, & ne diffèrent point non plus, quant à leur nature & à leurs principes, du corps même dans la maffe duquel elles entrent. On doit donc entendre par parties intégrantes d'un corps les plus petites molécules dans lesquelles ce corps puisse être réduit sans être décomposé. On conçoit, par exemple, qu'un sel neutre, tel que le sel commun dont on vient de parler, peut être divisé en molécules de plus en plus petites, mais sans qu'il y ait défusion de l'acide d'avec l'alkali, qui le constituent sel neutre ; en sorte que ces molécules, quelque petites qu'elles soient, feront toujours du sel commun, & en auront toutes les propriétés effentielles. Si l'on suppose ensuite que ces molécules de sel furent parvenues au dernier degré de ténuité, en sorte que chacune ne fût plus que l'assemblage d'un seul atome d'acide & d'un seul atome d'alkali, & qu'elles ne puissent plus être divisées davantage, sans qu'il y ait séparation de l'acide d'avec l'alkali, alors ces dernières molécules, qui ne peuvent plus être divisées sans être décomposées, font celles que je nomme dans mes leçons de chymie molécules primitives intégrantes.

De même que l'on conçoit très-bien qu'un corps peut être ainsi réduit en les molécules primitives intégrantes, sans changer de nature & sans éprouver d'autre altération qu'une simple division dans sa maffe ; de même il est facile de sentir aufl que si ces molécules primitives intégrantes, qui font toutes homogenes & de même nature, & qu'on suppose séparées, viennent à s'unir & à se combiner les unes avec les autres, il ne resultera point de cette union un nouveau corps d'une nature différente, mais seulement une maffe plus considérable du même corps : c'est-à-dire, par exemple, que si les molécules primitives intégrantes étoient du sel commun, leur réunion ne formera jamais que du sel commun, mais d'une maffe d'autant plus grande, qu'il y aura eu un plus grand nombre de molécules primitives intégrantes de ce sel.

qui se feront réunies ensemble. Or, c'est l'union de ces parties homogènes & de même nature, de ces molécules primitives intégrantes ou agrégatives, que les chymistes modernes ont nommée agrégation ; & ils ont nommé agrégats ou agrégés les corps considérés comme étant le résultat de leurs parties primitives intégrantes, par opposition aux noms de mixters & de composés qu'ils ont donnés aux corps considérés comme le résultat de l'union de leurs parties constituantes, lesquelles font des substances hétérogènes & de nature différente.

Le nom de parties intégrantes, qui a été donné à celles dont l'union forme les agrégats, leur convient très-bien, parce qu'effectivement cette union est une espèce d'addition ou intégration, s'il est permis de se servir de ce terme, d'un certain nombre de parties de même espèce, dont il résulte une forme ou un tout.

Il est très-essentiel d'observer au sujet de l'agrégation, qu'on en aurait une idée bien fausse & tout-à-fait opposée aux phénomènes que présente la chymie, si l'on n'entendait pas par ce mot qu'une simple juxtaposition des parties intégrantes des corps : il faut de plus qu'il y ait une adhérence réelle & une union intime de ces mêmes parties les unes avec les autres, en sorte qu'elles ne puissent être séparées sans le secours de quelque force supérieure à celle qui les unit. Un tas de sable, par exemple, si l'on considère les grains de sable comme les parties intégrantes, ne peut point être regardé comme un agrégé, parce que ces grains ne font que juxtaposés, & n'ont point d'adhérence réelle les uns avec les autres ; en sorte que la résistance qu'ils opposent à leur séparation, ne vient que de leur pesanteur qui les fait tendre vers le centre de la terre, & n'est point l'effet de l'adhérence ou de la tendance qu'ils ont les uns vers les autres.

Il faut observer en second lieu, au sujet de l'agrégation, que la force de l'adhérence des parties intégrantes des différents corps varie beaucoup, suivant
AGRÉGATION.

la nature de ces corps, quelques-uns en ayant une très-grande, tandis que d'autres au contraire n'en ont qu'une très-foible; & que ceux-ci font en général les plus faciles à diffuser, attendu que la dissolution d'un corps, ou fa combinaison avec un autre corps de nature différente, ne peut se faire qu'autant que les parties intégrantes de ces corps font séparées, ou que leur agrégation est rompue; ce qui se fait, en partie, par les opérations de l'art, mais plutôt encore par l'action des diffusants.

Quoiqu'on ne puisse douter que dans la plupart des opérations de chymie, & sur-tout dans les dissolutions, l'agréation de beaucoup de corps ne soit entièrement rompue, de sorte que ces corps se trouvent alors réduits en leurs molécules primitives intégrantes, il s'en faut beaucoup cependant que nous connaissons les propriétés essentielles des parties agrégatives d'aucun corps. Ces molécules font d'une si extrême petite qu'elles ne peuvent tomber sous aucun de nos sens, quand elles font isolées ou séparées les unes des autres. Ainsi nous ne pouvons avoir d'idée juste, ni de leur grosseur, ni de leur figure, ni de leur dureté, ni de leur pesanteur spécifique, en un mot d'aucune de leurs qualités distinctives; nous ne pouvons juger d'aucune de ces qualités, même par celles du corps agrégé qui résulte de leur union. La raison en est, que les propriétés du corps agrégé dépendent autant, & peut-être même beaucoup plus, de la manière dont les parties agrégatives ou intégrantes sont jointes les unes aux autres dans l'agréation, que des propriétés essentielles de ces mêmes parties. Il est très-possible, par exemple, que des molécules agrégatives très-dur peuvent former un corps agrégé fort mou; que d'autres qui n'ont nulle élastique produisent par leur réunion une substance très-élastique; que de l'union de particules agrégatives très-dur & très-peintes, il ne résulte qu'un corps rare & léger, &c. On conçoit en effet que toutes ces propriétés des agrégés doivent dépendre de la figure de leurs parties agrégatives, de l'étendue plus ou
AIR.

foient dans le cas de se rassembler entre elles, on comprend très bien qu'alors, l'agrégation de l'air se trouvant rétable, il reparoira avec sa légèreté, sa rareté, sa compreßibilité, en un mot avec toutes les propriétés que nous lui connaissons dans son état d'agrégé, et qu'il ne doit qu'à la nature de son agrégation, c'est-à-dire à la manière d'être de ses parties primitives intégrantes ou agrégatives les unes à l'égard des autres.

Ce qu'on vient de dire de l'air, qui a été pris pour exemple, au sujet de l'agrégation, est applicable à tous les autres corps de la nature, soit solides, liquides ou fluides ; car ces derniers, malgré leur fluidité, ont aussi leur agrégation : on comprend par là, comment le feu même, ou plutôt la lumière, peut être combiné en quantité très-considérable dans des corps composés, sans manifester ni chaleur ni lumière, et beaucoup d'autres effets de la nature qui feroient inconcevables sans cette théorie. On ne saurait trop s'appliquer à l'approfondir, tant elle répond de jour en jour aux phénomènes de la physique la plus relevée. Voyez les mots Affinité, Composition, Dissolution, Décomposition, Causticité, & plusieurs autres relatifs à ces objets.

AIGRE. On donne ce nom à toutes les choses qui ont une saveur piquante & qui agacent les dents, comme celle du vinaigre : cette saveur est naturelle à tous les acides minéraux, végétaux & animaux. Lorsqu'elle se développe dans quelque substance végétale ou animale, où on ne l'apercevoit pas auparavant, elle y est toujours le produit de la fermentation acide.

On donne aussi le nom d'aigre aux matières métalliques qui manquent de ductilité ; ainsi on dit, un régule aigre, un métal aigre, du fer aigre, pour désigner que ces substances sont sujettes à se fendre, à se caffer, & ne font point malléables.

AIR. L'air est un fluide invisible, inodore, insipide, ou du moins dont nous ne sentons point la saveur, par l'habitude où nous sommes de l'éprouver sans celle depuis notre naissance : nous ne pouvons donc appercevoir l'air par aucun de nos sens, si ce n'est par le toucher. Il n'est pas impossible que lorsqu'on l'observe avec ses yeux en traversant une grande épaisseur d'air, comme c'est celle de l'atmosphère terrestre, ce liquide ne devienne sensible à nos yeux jusqu'à un certain point. M. de Buffon pense même que cela est très-certain, & que c'est la cause de la couleur bleue que nous rapportons au ciel. Mais l'air de l'atmosphère est-il pur ? n'est-il pas au contraire chargé d'une quantité considérable de substances volatiles qui émanent perpétuellement de l'eau & de tous les corps végétaux, animaux & minéraux qui composent le globe terrestre ? & comment savoir si cette couleur n'est pas due au mélange de toutes ces matières hétérogènes ?

On regarde l'air comme un corps simple, élémentaire & principe primitif, parce qu'on ne peut lui causer d'altération ; ni le décomposer par les moyens connus dans la chimie. L'air est toujours sous la forme d'un fluide, quoiqu'il ne soit peut-être pas essentiellement fluide par lui-même ; mais il paroit contenant qu'on n'a jamais observé dans la nature, ni dans les refroidissements artificiels, un degré de froid assez fort pour le priver de sa fluidité.

Nous ne pouvons guère nous flatter d'avoir l'air, non plus que les autres éléments, dans un degré de pureté ab solu ; il se trouve, au contraire, toujours chargé d'une plus ou moins grande quantité de corps étrangers provenans des exhalaisons perpétuelles des matières volatiles, & fur-tout de l'eau & de plusieurs gaz, avec lequelles même il a un certain degré d'adhérence.

Les parties primitives intégrantes de l'air, quoique fans doute très-délites, le paroissent cependant moins que celles de l'eau, & même de plusieurs autres liquides moins simples, tels que l'essprit de vin & les huiles ; du moins ces liquides paissent aisément par les pores de plusieurs corps, tels que le papier, la peau, &c. à travers lesquels l'air ne passe point, ou ne passe que
très difficilement. Il est possible cependant que ces différences dépendent aussi de quelques autres causes, telles que la figure & la pesanteur des parties intégrantes, comme le remarque fort bien M. Parmer dans une de ses notes.

Les expériences de Boyle, & fur-tout celles de M. Hales, dont il donne le détail dans sa Statique des végétaux, prouvent que la plupart des matières végétales & animales contiennent une quantité d'air prodigieuse & qu'on aurait peine à croire, si les effets qu'il produit n'étoient aussi considérables & aussi sensibles. Les expériences chimiques nous fournissent beaucoup d'occasions, non-seulement de remarquer & d'observer ces phénomènes, mais encore d'apprecier la quantité d'air, que l'on voit se développer ou s'absorber dans plusieurs opérations.

Au reste, il paroit que l'air, de même que les autres principes primitifs, se trouve dans les corps dans deux états différents; c'est-à-dire, que dans certains corps & dans certaines circonstances il est simplement dissipé & interposé entre leurs parties intégrantes, mais sans adhérer à ces mêmes parties, ou du moins n'ayant avec elles qu'une adhérence très-faible. Cet air, qu'on peut séparer par des moyens purement mécaniques, tels que l'opération de la machine pneumatique, la compression, la fecoupe, qui jout d'ailleurs de toutes ses propriétés, ne doit pas être regardé comme étant un des éléments des corps dans lequel il est dans cet état; mais la portion d'air qu'on ne peut séparer de plusieurs corps qu'en les analysant & en employant les moyens de décomposition que fournit la chymie, qui d'ailleurs, tant qu'il est dans ces corps, est privé d'une des propriétés de son origination, telle, par exemple, que son élasticité, qu'il ne recouvre qu'à mesure qu'il est dégagé; cet air, dis-je, doit être considéré comme étant véritablement un des éléments ou parties constitutantes de ces corps.

Les propriétés de l'air pur, & qui lui font jouer un très-grand rôle dans la chymie, sont:

1. Sa dilatabilité; c'est-à-dire, qu'il est susceptible de se raréfier beaucoup, & d'occuper un espace beaucoup plus considérable que son volume lorsqu'il éprouve la plus grande chaleur possible. Les physiciens varient sur ce degré d'expansibilité de l'air; cette propriété de l'air, jointe à la prodigieuse quantité qui s'en dégage dans plusieurs analyses & mélanges chimiques, occasionne souvent de violentes explosions, contre lesquelles un artifice intrust & intelligent doit toujours être en garde.

2. Sa compressibilité; c'est-à-dire, que l'effet contraire à celui dont on vient de parler, lui arrive par le froid & par la compression.

3. Son élasticité, qui n'est autre chose que la force avec laquelle il tend à se remettre dans son état naturel, lorsqu'il est violemment raréfié, comprimé ou condensé, & l'effort qu'il fait pour cela si les corps qui s'opposent à son rétablissement.

4. Sa pesanteur, qui le détermine à se précipiter avec impétuosité dans tous les espaces qu'il n'occupe pas, qui ne sont point remplis par des corps plus pênants, & où il peut trouver accès. Les expériences qui démontrent toutes ces propriétés de l'air sont si nombreuses & si décisives, que rien n'est plus connu ni plus clair en physique: on peut consulter à ce sujet les ouvrages de Pasquel, de Boyle, de Mariotte, de Mushenbroeck, de M. l'abbé Nollet, en un mot, de tous les physiciens. Il faut seulement observer sur la pesanteur spéciale de l'air, qu'a cet égard il est à l'eau à peu près comme 1 est à 850; c'est-à-dire, que l'eau est environ 850 fois plus pênante que l'air à volume égal.

5. La faculté que l'air a de faciliter considérablement l'évaporation des matières volatiles que le feu sublime. C'est un fait très-prouvé en chymie, que le concours de l'air accélère beaucoup les évolutions & les distillations quelconques. On voit, par exemple, qu'en dirigeant le vent d'un soufflet à la surface de quelque corps volatile qu'on fait évoluer sur le feu, tels que l'eau, l'antimoine, le mercure, &c. la fumée ou les vapeurs de ces corps augmentent d'une manière
très-sensible. Il est certain aussi qu'on abrège beaucoup la distillation d'une liqueur quelconque, de l'eau, par exemple, en dirigeant à la surface, dans l'intérieur de l'alambic, le vent d'un ventilateur, ainsi que l'a proposé un Anglais.

6. Enfin, la plus singulière des propriétés de l'air, & en même temps une des plus intéressantes de la chimie, consiste en ce qu'aucun corps combustible ne peut brûler sans son secours, & que plus il est déterminé à frapper vivement les corps embrasés, plus il les fait brûler rapidement : d'où il suit que, comme la plupart des opérations de chimie ne peuvent se faire qu'à l'aide du feu, on a continuellement besoin dans ces opérations d'un courant d'air plus ou moins fort, & déterminé dans certaines directions, pour produire le degré de feu qu'on veut avoir. On parvient à le procurer ces courants d'air par le moyen des soufflets qu'on adapte, soit à la forge, soit aux fourneaux de fusion, ou bien par la construction des fourneaux mêmes, qui est telle, qu'au moyen d'un espace mélangé à la partie supérieure du fourneau dans lequel la chaleur entretient un vide perpétuel, l'air extérieur est déterminé & forcé à entrer par le cendrier pour aller remplir le vide du haut, & forme par conséquent un courant qui passe à travers le foyer, & qui est d'autant plus fort & plus rapide, que le vide du haut du fourneau est plus grand. C'est là un principe fondamental dont on déduira des règles générales, appliquables à la mécanique & à la construction de tous les fourneaux.

Boerhaave, dans son Traité du feu, & M. Gerière, docteur en médecin, de l'académie royale de Berlin, qui a donné aussi une très-grande déformation du feu dans un fort bon ouvrage, imprimé en 1741, intitulé, Fundamenta chimie rationalis, pensent que le concours de l'air est nécessaire pour entretenir la combustion des corps, parce que par sa pesanteur & par son refroidissement continue la flamme appliquée sur le corps combustible, & augmente le contact.

Cependant cela ne paroit pas suffisant pour expliquer pourquoi ces corps combustibles peuvent être tenus rouges & embrasés dans des vaisseaux fermés sans se consumer, parce qu'alors on ne peut douter que la matière du feu dans le mouvement igne ne soit continuellement appliquée & même pousée sur le corps combustible, sans cependant qu'il brûle & se confume ; il a toute l'apparence d'un corps brûlant & pénétré de feu, mais c'est d'un feu étranger qu'il est pénétré ; la propre matière inflammable ne se dégage point, & reste inaltérable au milieu du grand feu.

Quoi qu'il en soit, il est toujours très-certain que le concours de l'air est indispenfablement nécessaire pour entretenir la combustion des corps, mais il est en même temps extrêmement difficile de trouver la vraie cause de ce fait. Les phénomènes de la combustion semblent prouver que l'air concourait matérielle à la production de la flamme, & qu'il en fait lui-même partie ; car une quantité donnée d'air ne peut entretenir que pendant un temps limité & toujours le même, la combustion d'une certaine quantité de matière combustible. Si l'on place, par exemple, une bougie allumée sous une cloche de verre renfermée, joignant exactement par en-bas avec son support, la flamme de la bougie subsiste pendant un certain temps, d'autant plus long que la cloche est plus grande ; mais elle va toujours en diminuant, jusqu'à ce qu'enfin elle s'éteigne absolument, parce que la quantité d'air contenu sous la cloche étant déterminée, & ne pouvant se renouveler, ne peut servir aussi qu'à une certaine quantité de combustion. Un autre phénomène digne de remarque dans cette expérience, c'est qu'après que la bougie est éteinte, on trouve qu'il s'est formé un vide réel d'air sous la cloche sans qu'il en soit sorti ; elle est alors appliquée à son support, ce qui prouve démonstrativement que l'air qu'elle renfermait a concouru matérielle à la production de la flamme, puisque si cela n'était pas ainsi, l'air prodigieusement raréfié par la chaleur de l'intérieur du récipient, feroit au
contre effort pour le soulever, & s'en échapperait aussitôt qu'il en aurait la liberté.

Pour le peu qu'on réfléchisse à ces phénomènes, il se présente parfois des questions bien intéressantes, mais en même temps bien épineuses à réfléchir. En effet, l'air qui disparaît dans cette expérience est-il entraîné dans une nouvelle combinaison avec le principe inflammable de la matière embrasée, & forme-t-il avec lui un nouveau composé ? Si cela est, quel peut être ce composé ? que devient-il ? Où bien l'air lui-même sort-il d'un aliment nécessaire à la flamme ? est-il décomposé par l'acte de la combustion ? Si la chose est ainsi, l'air n'est donc pas un corps simple : de quelle nature sont ses principes ? que deviennent-ils ?

Ce qu'il y a de certain, c'est que l'air dans lequel un corps combustible quelconque, soit huileux, soit charbonneux, a brûlé, & cesse de bruler faute de nouvel air, précipite l'eau de chaux, éteint la flamme, fait mourir les animaux ; en un mot, que ce n'est plus de l'air, mais un fluide qui a toutes les propriétés du gaz méphytique.

Les nouvelles connaissances que nous avons acquises sur les propriétés de l'air & sur celles des matières gazeuses, quoiqu'encore fort incompletes, semblent néanmoins pouvoir déjà répandre quelque jour sur l'effet caché de l'air dans la combustion. On peut souffrir avec assez de fondement, que la combustion n'est qu'une décomposition chimique, dans laquelle le feu principe, c'est-à-dire la matière de la lumière, est séparé d'avec les autres principes du composé combustible, mais que cette décomposition est du nombre de celles qui ne peuvent se faire sans l'action d'un intermédié ; qu'ici cet intermédié absolument nécessaire à la séparation, au dégagement de la matière de la lumière, c'est l'air lui-même qui fait & qui peut faire à cet égard la fonction d'un précipitant ou d'un intermédié décomposant.

Si cette conjecture est bien fondée, il s'ensuit que l'air ne peut séparer la matière de la lumière qu'autant qu'il se combine lui-même à sa place avec le corps qui
AIRAIN.

les pesanteurs spécifiques des alliages des substances métalliques étoient sujettes à différer en plus ou en moins de ce qu'elles devroient être si dans ces alliages il n'y avait point quelquefois pénétration ; et que dans d'autres alliages c'étoit le contraire qui arrivoit. Mais dans ces derniers tems on a travaillé sur cette matière avec beaucoup plus de précision ; plusieurs bons chimistes, tels que MM. Einfjorn, Hahn, Kroff & Gellert, ont donné des résultats d'expériences bien faites sur cela. Voyez la Traduction française de la chymie métallurgique de M. Gellert.

M. Tillet, de l'académie royale des sciences, remarque dans son Mémoire sur la dureté des métaux, que lorsque le mélange du cuivre avec l'étain est fait dans des proportions qu'on vient d'indiquer, la couleur du cuivre est entièrement abolie & couverte par celle de l'étain, quoique le cuivre soit en proportion quadruple de l'étain. On ne peut guère concevoir cet effet singulier sans l'admettre comme un changement total dans la diminution & la disposition des pores du métal composé, ce qui par conféquence est une nouvelle preuve de la pénétration réciproque des deux métaux.

Comme l'étain est moins sensible à l'action de l'air de l'humidité & de l'air que le cuivre, il est aussi bien moins sujet à la rouille ; de là vient que le bronze se couvre moins de verd-de-gris que le cuivre pur : c'est une des raisons pour lesquelles on fait cet alliage pour des ouvrages, tels que les canons & les statues, ordinairement destinés à être exposés à l'air de l'air.

Une autre raison qui donne de l'avantage à cet alliage, c'est qu'il est plus fusible que le cuivre seul ; & cette fusibilité facilite considérablement la réutilisation des grandes pièces, telles que les canons, les cloches & les statues, qui doivent être coulées d'un seul jet.

Enfin (& ceci est un phénomène digne d'attention) l'étain, quoiqu'infiniment plus mou & moins fonore que le cuivre, le rend cependant, étant allié avec lui dans une proportion convenable, plus dur & plus fonant ; & c'est pour cela que cet alliage est utile pour les cloches, les fonnettes, les timbres, &c.

ALAMBIC.

M. Parner (notes sur le Dictionnaire de chymie) dit qu'ayant fait des alliages de cuivre & d'étain dans différentes proportions, il a observé que lorsque le cuivre y domine, le foin est bien plus fort, & qu'il diminue au contraire, quand c'est l'étain qui est en plus grande proportion ; que beaucoup de cuivre & peu d'étain donnent un métal malléable, de même que beaucoup d'étain & peu de cuivre ; & que lorsqu'on allie des parties égales des deux métaux jusqu'à huit ou neuf de cuivre contre une d'étain, on obtient des métaux aigres, cette aigreur diminuant au - de plus & au - de plus de ces proportions.

L'opération par laquelle on fond en grand le bronze pour en couler de grandes pièces, est assez simple : on se fera pour cela d'un fourneau de maçonnerie en briques, lequel a à peu près la forme d'un four à cuire du pain ; l'aire de ce fourneau est concave, & forme une cale composée de branche peinte, c'est-à-dire, d'argille & de fable ; c'est dans cette cale qu'on place les métaux qu'on doit fondre. Le fourneau a trois ouvertures ; la première est une bouche latérale, par laquelle s'introduit la flamme du bois placé dans une espece de second fourneau à côté du premier. La seconde est une cheminée placée au côté opposé à la bouche, & qui sert à faire tirer & à idéterminer l'entrée de la flamme dans le four où est le métal ; & la troisième est un trou qu'on ouvre & qu'on ferme à volonté, & par lequel on peut avoir inspection dans l'intérieur du fourneau, pour juger de l'état de la fonte. Quand elle est au point où le fondeur la définit, il débouche une quatrième ouverture qui répond à la cale, & par laquelle le métal fondu coule par des canaux dans le moule destiné à le recevoir.

ALAMBIC. L'alambic est un vaisseau qui ferraux distillations. Il y en a de plusieurs especes qui different, soit par leur forme, soit par la matière dont ils sont composés.

L'usage le plus frequent des alambics est pour les distillations des principes tres-volatils qu'on tire de plusieurs substances, & particulièrement des vegetaux.
ALAMBIQUE.

Quand les principes qu'on a intention de retirer par la distillation n'ont point d'action marquée sur les métaux, & qu'ils sont susceptibles de s'élever à un degré de chaleur qui n'excède point ou qui n'excède que peu celui du l'eau bouillante, telles que l'esprit de vin, l'esprit rectifié, les eaux aromatiques, simples ou spiritueuses, les huiles essentielles, on se sert d'alambics de cuivre bien étamés dans toute leur surface intérieure.

Les plus commodes de ces alambics, ceux qui peuvent servir à un plus grand nombre de distillations, sont composés des pièces suivantes : la première est une efpiece de marmite définie à contenir, soit les matières qu'on veut posmettre à la distillation, soit de l'eau dans laquelle on plonge un autre vaisseau plus petit & de même forme, & fait pour contenir les matières qu'on veut distiller au bain-marie. Ces pièces de l'alambic se nomment en général cucurbites, parce qu'autrefois elles étoient de forme allongée, élevée, le retrécissant beaucoup dans leur partie supérieure, & dégénérant en une efpiece de col, ce qui les faifoit ressembler à une calotte, ou à une vesse, dont quelques chymistes leur ont aussi donné le nom.

Les cucurbites des alambics de cuivre n'ont prêfentement aucun rapport à cette forme ; elles font au contraire larges, peu profondes & évasées. Cette nouvelle forme de cucurbites est infiniment plus avantageuse, en ce qu'elle accèlère beaucoup les distillations, sans qu'on soit obligé de donner plus de chaleur. La raison de cela, c'est que la promptitude de la distillation est toujours proportionnée à celle de l'évaporation, & que l'évaporation ne se fait jamais qu'à la surface des corps, plus ces corps préfèrent de surface, plus l'évaporation est prompte & facile. Or, la forme large & évasée des cucurbites modernes est infiniment plus propre à faire préférer plus de surface aux corps, & fur tout aux corps liquides qui les contiennent, que celle des cucurbites anciennes qui étoient hautes & étroites.

La première de ces deux pièces est de cuivre, pour
Pour éviter de lutter le chapiteau avec la cucurbit, on a imaginé de faire ces alambics de verre d'une feuille pièce ; le chapiteau de ces alambics qui, dans ce cas-là, font de cristal ; doit avoir une tubulure à son sommet, qui puisse se fermer exactement avec un bouchon de cristal usé à l'émeri. Cette tubulure est destinée à introduire les matières qu'on veut faire a la distillation, & à retirer les résidus après la distillation : ces alambics d'une feuille pièce, quoique commodes à certains égards, font cependant peu employés, à cause de leur cherté, & de la difficulté d'y introduire & d'en retirer les matières solides.

On fait affû de cucurbites de terre cuite en grais, & de terre vernissée, qui ont leur utilité dans plusieurs cas.

ALBATRE. On a donné le nom d'albâtre à des pierres qui ont une ressemblance extérieure avec le marbre ; qui ont à peu près le même degré de dureté, mais cependant moindre; qui prennent un poli à peu près semblable, mais un peu moins vif & plus gras : il y en a de blancs, & d'autres colorés & veinés, comme les marbres ; lorsqu'ces pierres sont bien polies, elles ont un coup d'œil d'agate, à cause de leur demi-transparence, qui est plus sensible que celle du marbre.

Les naturalistes ne font point d'accord sur la vraie nature de la pierre qui doit porter le nom d'albâtre : car il y en a qui donnent ce nom à des pierres de nature abfolument calcaire, tandis que d'autres le donnent à des pierres de nature gypseuse. M. Pott est de ces derniers ; il n'admet point d'albâtre calcaire ; il s'élève avec force dans la Lithogéognosie, contre MM. Linnæus, Kämig, Bruckmann & plusieurs autres savans, sur ce qu'ils mettent l'albâtre dans la classe des marbres & des pierres calcaires.

On ne peut douter que la pierre que M. Pott nomme albâtre, & qu'il a examinée chimiquement, ne soit effectivement de nature gypseuse ; les expériences qu'il a faites les démontrent avec évidence ; mais, d'un autre côté, il ne paraît pas moins certain qu'on a donné très-anciennement le nom d'albâtre à des pierres de nature dé-
AL B A T R E.
cidément calcaire : la plupart des vases & des buttes antiques , que tout le monde s’est accordé à qualifier d’albâtre , font de cette éponge ; les fragments de ces ouvrages se diffusent promptement dans l’esprit de nitré, en entier & avec une grande effervescence ; & si on les expose au grand feu, ils se convertissent en une très bonne chaux.
La vérité est que les sculpteurs & autres artistes qui travaillent le marbre & l’albâtre, paroissent avoir donné indistinctement le nom d’albâtre à des pierres qui ne se ressemblent que par des apparences extérieures ; c’est-à-dire, à celles qui, aux autres qualités extérieures du marbre, joignent une apparence plus crytalline & plus transparente : ce qui leur a fait confondre sous le même nom des pierres de nature très-différente ; & que dans celles qu’on trouve désignées sous ce nom, il y en a de vraiment calcaires, & d’autres qui sont purement gypseux. Ainsi, si l’on veut nommer les pierres d’après leurs apparences extérieures, on doit, pour ne pas confondre deux substances totalement différentes, admettre deux sortes d’albâtre, l’une calcaire, dont ont faits beaucoup de vases & de buttes antiques, qu’on nomme d’albâtre ; & l’autre gypseuse, dont on trouve aussi quelques ouvrages de sculpture : cette dernière est celle que M. Pott a examinée, & à laquelle il voudroit qu’on en attribuât exclusivement le nom d’albâtre. Il peut se faire aussi qu’il y ait des albâtres partie gypseux, partie calcaires.
Au moyen de ces éclaircissements, les chymistes & les naturalistes sont maîtres de prendre tel parti qu’ils voudront sur cet objet ; on les entendra toujours, quand ils désigneront de cette manière les substances dont ils voudront parler.
Cela posé, l’espèce de pierre qu’on peut nommer albâtre calcaire a essentiellement toutes les propriétés des pierres calcaires ; c’est pourquoi il faut consulter sur cet objet les articles PIERRÉS, CALCAIRES & CHAUX. On observera seulement ici qu’il paroit démontré, comme l’a avancé M. d’Aubenton, que les différences qu’on peut observer entre l’albâtre calcaire &

ALK A H E S T.
& le marbre, ne viennent que de la différente manière dont ces deux substances sont formées, le marbre étant d’ancienne formation & le produit d’un dépôt de parties de terre calcaire accumulées les unes sur les autres par bancs & en très-grandes masses, tandis que l’albâtre calcaire est formé aussi de parties de cette terre, mais par voie de filtration & en falacleites, dont on trouve tous les jours des masses аfiez considérables pour en faire des vases, des buttes, & même des statues. Cette différence dans la formation de ces deux matières, suffit pour expliquer la plus grande transparence de l’albâtre calcaire : en effet, si l’on prend un morceau bien décédé de falacleite calcaire, qu’on le taille & qu’on le poliifie, on ne pourra y appercevoir aucune différence d’avec les ouvrages d’albâtre calcaire.
A l’égard de l’espèce de pierre qu’on peut nommer albâtre gypseux, il ne manque en effet à cette matière aucune des propriétés des pierres gypseuses ; c’est pourquoi il faut consulter sur cet objet l’article GYSE.

ALCHYMIE. Ce terme a été employé par les prétendus adeptes, & par les chercheurs de pierre philosophe, pour désigner la chymie par excellence, dont ils se flattent que la connaissance est réservée à eux seuls. Les adeptes regardent la chymie comme une science vulgaire, qui contient à peine les premiers éléments de la science mystérieuse de l’alchimie ; mais jusqu’à préfèrent ils n’ont rien produit qui, au jugement des personnes fainées, puisse donner le moindre fondement à une pareille prétention. Les vrais chymistes regardent l’alchimie comme une science imaginaire, & ceux qui s’y adonnent, comme des gens qui, faute d’être suffisamment instruits, quittent la réalité pour courir après l’ombre.

ALKALESCENT. On emploie ce mot pour désigner une matière légèrement alkaline, ou qui commence à tourner à la fermentation alkaline & putride.
ALKAHEST. C’est le nom que donnaient les anciens chymistes à un prétendu diffusant universel. Un pareil diffusant n’existe point, ou bien il n’y a point de
ALKALI FIXE.

corps dans la nature qui ne puissent devenir un alkahest ;
car quoiqu'il y ait certaines substances que, jusqu'à
présent, on n'ait point pu combiner avec quelques autres, les découvertes qui se font de jour en jour en
chimie, au sujet de ces fortes d'ions qu'on avoit
cru impossibles, semblent prouver qu'avec des ma-
nipulations & dans des circonstances convenables, on
peut combiner une substance quelconque avec toutes
les autres, c'est-à-dire, diffoudre tous les corps par un
feu pris à volonté.

ALKALI FIXE. L'alkali fixe est une substance saline
qui paroit composée d'acide, de terre, & d'un peu de
phlogistique, & dont les principes ont ensemble une
moindre adhérence que n'en ont, les uns avec les
autres, ceux de l'acide. Il y a différentes espèces de
substances salines alkalines, qui font l'alkali vegetal,
l'alkali mineral & l'alkali volatil : elles portent toutes
le nom d'alkali, parce qu'elles ont des propriétés com-
munes entre elles, que voici :
1. Il est facile d'avoir les alkalis sous une forme
feche & concrete, & dépouillés de toute l'eau furabon-
dante à leur effence saline : lorsqu'ils sont en cet état,
2. Ils s'échauffent avec l'eau, & produisent du froid
avec la glace, svuivant l'expérience de M. Baumé.
3. Ils attirre l'humidité de l'air.
4. Ils verdissent le fyrop violat, dans quelqu'état
qu'ils soient.
5. Ils ont une saveur âcre & brûlante, d'autant plus
forte qu'ils sont plus purs & plus dépouillés d'eau &
de gaz furabondans : cette saveur a quelque choce d'uri-
neux ; de-là vient que quelques chimistes ont nom-
né les fels alkalis fels urines : on les appelle aussi
fels liquidiens, parce que la méthode de retirer les alkalis
fixes, confite à laisser les cendres des substances végé-
tales, qui les fournissent après leur combustion.
6. Ils s'exhalent en partie avec l'eau, fur-tout quand
on les fait bouillir à l'air libre, ce qui leur est commun
avec beaucoup d'autres matières salines.
7. Lorsqu'on les fait déflécher & qu'on les disfut de
nouveau, il s'en sépare toujours une portion de terre.

8. Ils

8. Ils entrent en fusion à un feu modéré.
9. Ils diffusent par la fusion toutes les terres.
10. En proportion convenable & au degré de feu
suffisant, ils se changent en verre avec les terres,
& fur-tout avec les terres vitrifiables. Voyez VITRI-
FICATION.
11. En grande proportion ils communiquent toutes
leurs propriétés aux terres qu'ils ont difficutes. Voyez
LIQUEURS DE CAILLOUX.
12. Ils s'unissent aux acides avec ou sans efferv-
escence jusqu'au point de saturation, suivant qu'ils
contiennent ou ne contiennent pas de gaz, plus par-
faitement & plus intimement que les pures terres
abordantes ; & il réfute de cette union différente fels
neutres.
13. Ils décomposent tous les fels à base terreuse,
métallique ou d'alkali volatile, séparent ces substances,
& s'unissent avec l'acide de ces fels, avec lesquels ils
forment de nouveaux fels neutres : c'est un exemple
d'une affinité plus forte, d'où résulte une décompo-
sition & une nouvelle combinaison.
Les fels alkalis étant des substances affex simples,
font, de même que les acides, de très-grands diffus-
vans ; ils sont capables de se combiner, non-feulement
avec tous les acides & avec toutes les terres, comme
on vient de le dire, mais encore avec le soufre & avec
toutes les matières huileuses ; ils forment avec le
soufre une espèce de savon fulfureux, diffusible dans
l'eau, auquel on a donné le nom de foie de soufre :
avec les huiles, les graisses, les résines, &c. ils for-
ment des composés, auxquels on a donné le nom de
savons. Les alkalis dans toutes ces combinaisons de-
viennent un interméde, au moyen duquel toutes ces
substances inflammables, naturellement indiffusibles
ou même immécibles avec l'eau, y deviennent in-
cibles & diffusibles.

Ces substances salines ont aussi de l'action sur l'esprit
de vin, lorsqu'elles sont dépouillées de toute eau & de
gaz furabondans à leur effence saline. Les alkalis air fi
disposés, enlevent d'abord à l'esprit-de-vin tout ce

Tome 1.
ALKALI FIXE VÉGÉTAL
qu'il contient lui-même d'eau furabondante; après
quoi, lorsqu'ils sont en proportion convenable, ils
agissent sur la propre substance en se combinant avec
lui, & lui causent différentes altérations, & même le
décomposent. Voyez TEINTURE ALKALINE ou de
SEL DE TARTRE.
Tous les alcalis éprouvent des changements consi-
dérables lorsqu'ils sont traités avec la chaux vive. Leur
cauterité, leur action dissolvante, leur fusibilité, leur
délugeante deviennent beaucoup plus fortes ou plus
marquées. Lorsqu'ils sont dans cet état de cauterité, ils
se combinent avec les acides sans effervescence, & for-
ment cependant avec eux les mêmes fels neutres que
dans leur état naturel. D'un autre côté les alcalis non
cauterisés ont éprouver à la chaux vive des change-
ments qui ne sont pas moins considérables, en ce qu'ils
lui enlèvent toutes les propriétés de chaux vive, & la
rétablissent dans son premier état de simple terre calca-
raie non calcinée. Voyez, pour l'explication de ces phénomènes, les articles CAUSTICITÉ, CHAUX PIER-
REUSE, ESPRIT VOLATIL CAUSTIQUE DE SÉL AM-
MONIAC, GAZ MÉPHYTIVQUE, TERRE CALCAIRE.
Enfin, les alcalis agissent aussi sur les substances métalliques plus ou moins facilement, suivant leur
nature, & par différents moyens dont on parlera à l'article
de chaque espèce d'alkali ou de métal.
Nota. Tout ce qui vient d'être dit sur les alcalis,
convenant généralement aux différentes espèces d'alkalis,
même à ceux qu'on nomme volatils, en supprimant,
pour ce qui regarde ces derniers, tout ce qui tient
nécessairement à la fixité. Ainsi cet article est appli-
cable à l'alkali en général. Mais il est essentiel d'ob-
server qu'on ne peut en former une idée bien juste de
ces généralités, sans entrer dans les détails de ce qui
concerne les différentes espèces. Voyez pour les affi-
nités de l'alkali fixe & pour ses vertus médicales
le mot ALKALI FIXE MINÉRAL.
ALKALI FIXE VÉGÉTAL. On est convenu de
donner le nom d'alkali fixe végétal à tous les alcalis
fixes qu'on retire par la combustion des matières végé-
tales quelconques, & qui n'ont point les propriétés de
l'alkali qui sert de base au sel commun : on a affecté à
cette dernière les noms d'alkali du fer commun, d'alkali
marin & d'alkali minéral.
La méthode générale de retirer les alkalis fixes des
solutions végétales, consiste à faire brûler ces sub-
tances librement & en plein air, à l'affiner ensuite
consommant entièrement leur charbon ou braife, & à les ré-
duire en cendres. Après quoi on lesfie ces cendres
avec de l'eau très-pure, jusqu'à ce que cette eau forte
insipide ; on la filtre ; on fait évaporer cette leste
jusqu'à l'écrit : ce qui refle étt le sel alkali fixe de la
plante, qu'il est bon de calciner à un feu doux & long,
pour le priver de toute eau furabondante, & d'une
portion de phlogistique & de gaz aussi furabondants.
Les alkalis fixes tirés des matières végétales quel-
conques, lorsqu'ils sont bien préparés & exactement
purifiés par les moyens qui seront indiqués ci-après,
font exactement semblables les uns aux autres, & ont
abfolument les mêmes propriétés ; enforo qu'ils ne font
tous qu'une feuille & même éspèce de substance saline.
Mais comme il est très-difficile d'avoir cette espèce de
fel dans le dernier degré de pureté, qu'il y a à cet
ergard de la différence entre ceux qu'on retire des
différentes matières végétales, les uns se trouvant
naturellement plus purs, ou pouvant se purifier plus
facilement que les autres, qu'elle même jusqu'à ces der-
niers tems on n'a pas fait une attention suffisante à
tous les moyens d'amener tous ces alkalis au dernier
degré de pureté, il en a résulté deux inconvénients :
le premier, c'est que plusieurs chymistes ont cru que
les alkalis des différentes plantes différeïoient essen-
tiellement les uns des autres ; & le second, c'est que
d'autres chymistes ont attribué à l'alkali en général
plusieurs propriétés qui ne lui appartiennent pas, &
quelque doit qu'à des substances étrangères dont il
n'est pas exactement séparé. Il est question ici de
l'alkali végétal parfaitement pur.
L'alkali fixe végétal a toutes les propriétés annoncées
à l'article ALKALI FIXE.

G. ij
ALKALI FIXE VÉGÉTAL.

Il est sous forme concrète, ressemblant à une substance terreuse d'un beau blanc mat, sans aucune apparence ni forme cristalline & régulière; il n'a point d'odeur tant qu'il est sec; si on l'humecte avec de l'eau, on s'aperçoit d'une légère odeur de lessive. Il a une saveur violente, acide, brûlante, caustique & urinée; c'est-à-dire, que quand on le met dans la bouche, il y développe une saveur d'urine putréfiée, à cause de l'alkali volatile qu'il dégage effectivement des substances animales.

Il faut observer à ce sujet, que lorsqu'on veut reconnaître par lui-même la saveur de l'alkali fixe, il convient d'avoir la précaution de le diffuser de chaque table dans beaucoup d'eau pure; ce fait que diminuer la force de cette saveur dans changé le caractère; sans quoi on s'exposerait à avoir la langue caoutchoutée, parce que l'alkali bien calciné est un puissant caustique, qui corrode et détruit promptement toutes les matières animales.

L'alkali fixe, exposé à l'air, en attirant l'humidité, à l'aide de laquelle il se réduit en un liquide blanche, transparente, absolument sans couleur, comme de l'eau pure; suivant M. Gellée, l'alkali fixe attire trois fois son poids d'humidité (Chymie métallurgique, tome I, page 26), il se charge ailleurs à l'air, d'une certaine quantité de gaz méthylaque, qui le fait cristallin et lui ôte sa déliquescence.

Toutes les fois qu'on diffuse l'alkali fixe dans de l'eau, il renvoie une portion de matière indissoluble. Si l'on filtre la solution, elle passe très-claire; mais au bout de quelques temps on s'aperçoit qu'elle s'assèche, et il s'y forme de petits flocons d'une matière qui se précipite au fond du vase, et qui ne peut plus être rédiffusée. Cette substance est de même nature que la première qui ne s'est point dissoute; ce n'est autre chose qu'une portion de la terre même de l'alkali qui se sépare à chaque calcination & dissolution de ce sel. La partie qui passe d'abord par le filtre, et qui ne trouble la liqueur que par la fuite, est celle qui étoit la plus atténuée & la plus adhérante au sel alkali. Cette terre
ALKALI FIXE VÉGÉTAL.

les terres qu'il a ainsi diffuses, dissolubles dans l'eau & dans les acides, susceptibles d'attirer l'humidité de l'air, &c. Voyez LIQUEUR DES CAILLOUX.

L'alkali fixe végétal s'unit à l'acide vitriolique avec violence & grande affervescence lorsqu'il n'est point caustique, c'est-à-dire privé de tout son gaz : l'union de ces deux substances salines est très-forte & très-intime ; il en résulte un fel neutre parfait, qui est le tartre vitriolé.

Avec l'acide nitreux il forme le nitrè, fel neutre cristallisable, dont il faut voir les propriétés au mot NITRE.

Avec l'acide marin l'alkali fixe végétal fait une espèce particulière de fel commun, qui ressemble, à bien des égards, au fel commun naturel, mais qui en diffère par plusieurs propriétés, & singulièrement par la faveur qui est beaucoup moins agréable ; les différences qui font entre ces deux espèces de fel ne doivent être attribuées qu'à la nature des bases alkaliennes, le fel commun naturel ayant pour base une espèce particulière de fel alkali fixe, qui diffère beaucoup de l'alkali fixe végétal. L'espèce de fel commun formé avec l'acide marin & ce dernier alkali, se nomme fel commun régénéré, ou fel frémitique de Sylvius.

L'alkali fixe végétal s'unit aussi très-bien avec les acides végétaux, & forme avec eux différents fels neutres, suivant la nature de ces acides : il fait avec l'acide du vinaigre un fel neutre délicieux, d'une saveur très-piquante, qu'on nomme tartre régénéré, ou terre foliée du tartre ; avec l'acide concret végétal ou la crème de tartre, il forme un fel neutre cristallisable, nommé tartre tartarifié, ou fel végétal.

Enfin l'alkali fixe végétal s'unit aussi & forme de vrais fels neutres avec quelques substances qui, sans être des acides décidés & purs, ne laissent point que de faire fonctions d'acides relativement aux alkaliis ; telles sont le fel sédatif, avec lequel cet alkali forme une espèce particulière de borax ; tel est aussi l'arsenic auquel il s'unit jusqu'au point de saturation, & avec equel il fait un fel neutre cristallisable très-singulier.

ALKALI FIXE VÉGÉTAL.

dont j'ai observé le premier les propriétés, & auquel j'ai donné le nom de fel neutre arsenical.

L'alkali fixe végétal diffusé le fourre dans toute la substance, c'est-à-dire, qu'il s'unit en même temps à l'acide & au phlogistique dont est composée cette matière minérale ; il diminue seul l'adhésion qu'ont entre elles ces deux parties constitutantes du fourre. Cette union de l'alkali avec le fourre peut se faire par la voie humide & par la voie sèche, mais beaucoup mieux par cette dernière ; il en résulte une espèce particulière de corps savonneux, auquel on a donné le nom de fait de fourre, qui est un grand dissolvant de toutes les substances métalliques.

Les substances métalliques sont susceptibles d'être attaquées & dissolues par l'alkali pur. Quelques-unes d'entre-elles, telles que le fer, & fur-tout le cuivre, n'ont besoin que d'être misés en digestion dans la liqueur de fel alkali pour s'y dissoudre parfaitement bien : la plupart des autres exigent une opération préliminaire, qui est leur dissolution dans un acide ; mais au moyen de cette dissolution on parvient à les dissoudre très-bien dans l'alkali. Il faut pour cela verfer quelques gouttes de la dissolution métallique dans une liqueur de fel alkali très-forte ; il se forme d'abord un précipité ; mais en agitant un peu la liqueur, on voit disparaître promptement de précipité : on continue ainsi de verfer à diverses reprises la dissolution acide métallique dans la liqueur alkaline, jusqu'à ce que cette dernière refuse de dissoudre le précipité qui se forme d'abord.

Tous les métaux ne se dissolvent point par cette méthode avec une égale facilité & en autant grande quantité dans l'alkali fixe ; l'argent, le mercure & le plomb s'y dissolvent moins bien & en moindre quantité que l'or, la platine, l'étain, le cuivre, & fur-tout le fer. Ce dernier donne à l'alkali, à mesure qu'il s'y diffuse, une belle couleur de safran tirant sur le rouge. Cette dissolution du fer par l'alkali est due à Stahl, qui le premier l'a publiée, & l'a nommée teinture martiale alkaline.
ALKALI FIXE VÉGÉTAL.

La plupart de ces dissolutions de métaux dans l'alkali ne confèrent leur limpidité que pendant un certain temps, après quoi elles se troublent, & il s'y forme un dépôt de la même couleur que la dissolution. Ce dépôt n'est autre chose qu'une portion de métal diffus qui se sépare du dissolvant, comme cela arrive à plusieurs dissolutions de métaux dans les acides.

M. Marggraf, dans la troisième dissertation de l'édition française de ses Opuscules, dit qu'il a réussi à diffuser les métaux par l'alkali fixe phlogistique avec le fang de bœuf, & non avec d'autre; & M. Parner, dans les notes qu'il s'est donné la peine d'ajouter à la traduction allemande qu'il a faite du Dictionnaire de chymie, avance qu'il s'est assuré de ce fait par l'expérience, & s'étonne qu'on ait pu le regarder comme douteux, ainsi que je l'ai fait dans la première édition de ce Dictionnaire. Tout ce que je puis dire à ce sujet, c'est qu'il m'a arrivé nombre de fois de diffuser les mêmes métaux, dont parle M. Marggraf, par des alcalis, soit fixes, soit volatils, qui n'avaient point du tout été calcinés avec le fang de bœuf, ni avec aucune autre matière inflammable, & qu'au contraire, plus les alcalis étaient phlogistiques, moins ils m'ont paru propres à faire ces fortes de dissolutions. Il est certain, d'après les expériences nombreuses que j'ai exposées dans mon Mémoire sur le bleu de Prusse, que plus les alcalis sont chargés de la matière propre à précipiter le fer en bleu de Prusse, plus ils perdent de leurs propriétés alcalines; de sorte même qu'au passage de l'eau pure à la même quantité de dissolutions de bleu de Prusse, j'ai pu en découvrir et même les alcalis qu'il m'a été donné de faire grâce à la peine de faire. Mais pour revenir à l'objet actuel, une chose qui paraît très-certaine, c'est que la dissolution des précipitations métaux par les alcalis dépend de quelques dispositions particulières de ces matières alcalines, qui n'est encore connue bien au juste, ni de M. Marggraf, ni de M. Parner, ni de moi-même. Je ne suis pas le seul auquel la dissolution des métaux par l'alkali phlogistique ait paru impossible. On lit dans l'édition française des œuvres de M. Model, donnée par M. Parmentier, que M. Bucholz ait dit la même chose. M. Model ayant voulu vérifier le fait, a trouvé qu'avec certaines attentions qui consistent principalement à étendre les liquides, & à l'aide du temps, il pourrait diffuser par de l'alkali phlogistique un peu de mercure diffus d'abord par l'acide nitreux, & précipité ensuite avec furabondance de cet alcali. Cela est très-possible; mais il n'y a pas de probable que c'est par la portion non saturée de cet alcali que ce peu de précipité de mercure a été diffusé. Au surplus, il paraît que M. Model n'avait pas connaissance non plus de mon travail sur le bleu de Prusse, lorsqu'il a fait les expériences qu'il rapporte, Recreations, &c. de M. Model, tome I, pages 434 & suivantes.

Par la force & par la voie lente, l'alkali fixe diffus et vitrifie toutes les chaux ou terres métalliques dé-
ALKALI FIXE VÉGÉTAL

Quable de cet alkali même, libre, bien caractérisé, pourvu de toutes ses propriétés, & qui n’est uni à aucun acide ; voilà donc de l’alkali existant dans les végétaux antérieurement à la combustion. Il rette à savoir si cet alkali, existant dans les plantes avant leur combustion, est vraiment une de leurs parties principales & constituantes, ou s’il n’est à leur égard qu’une substance étrangère & furabondante : ce qui pourroit le faire croire, c’est que la quantité de cet alkali, soit libre, soit uni à un acide sous la forme de sel neutre dans certaines plantes, est très-variable, qu’elle paroit dépendre entièrement de la culture ou de la nature du terrain ; en sorte qu’il arrive souvent que les mêmes plantes qui contiennent beaucoup d’alkali, quand ces deux causes favorisent son introduction, n’en contiennent point du tout quand elles s’y opposent.

A l’égard de la seconde proposition sur l’origine de l’alkali fixe végétal, c’est-à-dire, qu’une grande partie de cet alkali est produite & combinée par l’acte même de la combustion, elle est établie sur plusieurs preuves qui paraissent incontestables. L’observation même des circonstances qui concourent à la production de l’alkali par la combustion, démontre que cet alkali est formé en grande partie par l’acide végétal, qui dans la déflagration des végétaux se combine d’une manière particulière avec une portion de leur terre & de leur principe inflammable. On fera convaincu de cette vérité par les observations suivantes.

Premièrement, quand les végétaux, qui fournissent des cendres très-riches en alkali, font décomposées par tout autre moyen que par la combustion, on n’en retire guère d’autres matières faitines, que des acides fluors ou des fels essentiels proprement dits, lequels ne font autre chose que des acides concrets, qui ne doivent cette forme qu’à une portion d’huile & de terre, à laquelle ils sont unis.

Secondement, quand on a enlevé aux végétaux une portion de leur acide, soit par la distillation, soit par l’extraction de leurs fels essentiels, on retire de leurs
ALKALI FIXE VÉGÉTAL

On en a levé, ou l'alkali tout formé qu'elles pouvaient contenir, ou leurs acides & leurs fels essentiels, qui, comme on vient de le voir, sont les principaux matériaux qui doivent entrer dans sa composition.

M. Parner (notes sur le Dictionnaire de chymie) ne paroit point disposé à croire qu'il existe dans les végétaux & les animaux, des alkalis fixes tout formés & bien caractérisés ; il ne regarde pas même comme telle la substance qui sert de base au tartre vitriolé & au nitre qu'on retire de beaucoup de plantes sans le secours du feu. Voici comme il s'exprime à ce sujet :

"Il n'est point encore décidé qu'il se trouve dans les plantes un alkali naturellement : on dit qu'on peut retirer des plantes des fels neutres qui ressemblent au tartre vitriolé & au sulpitère ; cependant ce n'est nullement, ni du vrai nitre, ni du tartre vitriolé ; ce sont seulement des fels qui approchent de ces fels neutres ; mais si on dit qu'un fels neutre doit être formé d'un acide & d'un alkali, les fels fusibles ne sont point fels neutres, mais seulement des substances de fels ; car ils sont composés, en plus grande partie, d'un acide & d'une terre, joints à un peu de principe inflammable. Mais de ce qu'on peut, par la calcination, changer ces substances en alkali, ce n'est point une preuve qu'il y a existé un alkali, car pour lors il est formé de l'acide, de matière inflammable & de terre par le feu." Traduction mf: de M. Dreuze.

Il est certain cependant que MM. Marggraf & Rouelle ont retiré de la crème de tartre sans le secours d'aucune calcination, en la combinant feuille avec des acides minéraux, des fels neutres parfaits tels qu'ils doivent résultiter de l'union de l'acide employé, avec un alkali fixe végétal bien caractérisé ; il ne l'est pas moins, que M. Rouelle & M. Monnet ont trouvé de l'alkali marin pourvu de toutes ses propriétés & préservées dans l'alkali, sans le secours d'aucune combustion ou calcination. Tout nouvellement encore en 1773, M. Rouelle, qui publie journallement les découvertes importantes & nombreuses que ses travaux lui
ALKALI FIXE VÉGÉTAL

font faire en chymie, à mis sous les yeux de nos auditeurs, dans le cours public du Jardin du roi, des expériences qui annoncent la présence de l'alkali marin libre dans le jang humain, dans celui des animaux & dans les eaux des hydropiques (Journal de médecine, juillet 1774).

On ne peut guère se refuser, après de tels faits, à admettre l'existence des alkalis fixés tout formés dans les végétaux & les animaux, sans aucun concours de l'action du feu.

L'alkali fixe, préparé par l'incinération des substances végétales & par la simple lessive & évaporation à flocciété de cette lessive, est bien éloigné d'être au degré de pureté nécessaire pour les expériences exactes de la chymie. Il est presque toujours altéré : premièrement, par un reste de matière inflammable, qui n'a pu se consumer entièrement pendant la combustion ; secondevement, par une portion de terre furabondante : troisièmement, par le mélange de différentes matières fâlines, aufléfixe que lui qui édulent en tout ou en partie l'action du feu. Ces matières fâlines font :

1. quelques fels neutres, qu'on trouve fréquemment dans les plantes, tels que le tartre vitriolé, le fel de Glauber, le fel commun, le fel fêbrifuge de Sylvius ;
2. une portion d'alkali fixé minéral ou marin. Quatrièmement enfin, comme le fer est répandu presque dans tous les corps, qu'on en trouve singulièrement plus ou moins dans les cendres de la plupart des végétaux, comme l'a prouvé M. Geoffrion, & que d'ailleurs ce métal est très-diffusible par l'alkali fixe, cette substance fâline est très-fâjette aussi à être altérée par le mélange du fer.

On reconnaît que l'alkali fixe est phlogistique, ou altéré par une furabondance de matière inflammable :

1. par sa couleur qui n'est pas parfaitement blanche, & par celle de sa lessive ou dissolution dans l'eau, qui dans ce cas est plus ou moins jaune ou rouille, au lieu d'être absolument fâse couleur ; 2. par fâe odeur de lessive, qui est toujours d'autant plus forte, qu'il est plus phlogistique ; 3. par l'état de la causticité, qui

ALKALI FIXE VÉGÉTAL

est toujours d'autant moindre, qu'il retient une plus grande quantité de matière inflammable furabondante ; 4. enfin par la propriété qu'il a de précipiter en bleu de Prusse les dissolutions de fer dans les acides, lorsqu'il est beaucoup phlogistique.

Il y a deux moyens de purifier l'alkali fixe à cet égard, c'est-à-dire, de lui enlever toute la matière inflammable furabondante qu'il peut contenir. Le premier est la calcination suivant les règles générales avec toutes les attentions prescrites pour la calcina-

Le second moyen de purifier l'alkali fixe de la matière inflammable furabondante, consiste à lui présenter un corps fur lequel il n'a point d'action, & qui ait plus d'affinité que lui avec cette matière inflammable : la pratique de ce second moyen appartient à M. Baumé. Cet habile observateur, s'étant apperçu que lorsqu'il faisoit évanopérer dans des vaisseaux d'argent des lessives alkalines, ruffes & phlogistiques, ces vaisseaux se ternifient de plus en plus, jusqu'à ce qu'enfin la surface de l'argent devenit toute noire, & que la lessive perdit d'autant plus de sa couleur que l'argent en prenoit davantage, a poussé cette expérience jusqu' où elle pouvoit aller, & est parvenu, en renouvelant suffisamment la surface de l'argent contiguë à la lessive alkaline, à enlever toute la couleur à cette derniere, & à la rendre absolument blanche.

Cette lessive, évaporée ensuite à flocciété, a fourni un alkali parfaitement blanc, très-cautique, & exempt de tout phlogistique furabondant. Outre le moyen de déphlogistiquer le fel alkali que fournit cette expérience, elle confirme encore ce que j'ai dit dans ma théorie du bleu de Prusse, savoir, que les substances métalliques peuvent se charger de matière inflammable par furabondance, & qu'elles sont capables de l'enlever à l'alkali fixe par la voie humide.

La seconde substance qui altere l'alkali fixe est une portion de terre furabondante. Comme cette substance terreuse n'est point diffusible dans l'eau par elle-même, & qu'elle n'a qu'une adhérence très-foible avec l'al-
ALKALI FIXE VÉGÉTAL.

opérations. On peut purifier le fel de la potasse par les moyens dont on vient de parler, & en faire un alkali bon alkali.

Le marc & la lie de vin déjeûché, que l'on nomme grêvelle, étant brûlés, laissent une cendre très-riche en fel alkali, que l'on appelle cendre grêvelle. Cet alkali est non-seulement fort abondant; mais encore, lorsqu'il est de même, le plus pur de tous ceux qui contiennent des matières qui le fournissent des matières privées & les l'enduit au commerce: s'il contient du fer, c'est en grande infiniment, & il est naturellement exempt du mélange de fers étrangers, excepté d'un peu de tartre vitriolé. Aussi les teinturiers & autres manufacturiers, dont les opérations exigent un alkali pur, préfèrent la cendre grêvelle aux autres cendres alkaliennes.

Alkali fixe du tartre.

Le tartre, qui n'est autre chose qu'un fel concrèt existant dans le moût & dans le vin, etant brûlé convenablement, se change presque tout entier en un fel alkali très-fort & le plus pur de tous; c'est aussi celui auxquels les chémistes ont de tout temps donné la préférence, avec grande raison. L'alkali qu'on en retire le nomme fel alkali du tartre, ou simplement fel de tartre. De là vient que ce nom est devenu en chimie, en quelque sorte synonyme avec celui de fel alkali.

Pour faire le fel de tartre, on enveloppe dans des coings de gros papier mouillé le tartre qu'on veut brûler; on met ces coings dans un fourneau, lits par lits, avec du charbon; on y met le feu, & on fait brûler le tout jusqu'à ce qu'il ne s'éléve plus de fumée capable de noircir.

Comme le tartre se change presque tout entier en fel alkali, il confère après son incinération une certaine consistance, & retient la forme qu'il avait avant la combustion; ce qui donne la facilité de le recueillir proprement. Mais il faut avoir attention, lorsqu'on brûle ainsi le tartre, qu'il n'éprouve point un trop grand degré de chaleur, sans quoi l'alkali se fondroit, couler...
ALKALI FIXE VÉGÉTAL

La détonation il est alkalié pour ainsi dire dans un

infant, on a donné aussi à cet alkali du nitre le nom
d’alkali extemporé.

Les matières les plus utiles & les plus commodes
pour l’alkalisation du nitre, font le charbon & le tartre.
L’alkali du nitre, fait par les charbons, se nomme
nitre fixé par les charbons.

Le nitre & le tartre que l’on brûle ensemble laissent
un alkali très-fort, mêlé du alkali du tartre & de
celui du nitre, qui font absolument de même nature:
on les confond sous le nom de nitre fixé par le tartre
ou de flux blanc.

Ces alkalis du nitre, lorsqu’ils sont bien préparés,
font aussi très-purs, & peuvent servir aux opérations
les plus délicates de la chymie.

Mais il est à remarquer qu’après la simple détona-
tion du nitre, il reste toujours dans ces alkalis une
quantité assez considérable de nitre qui échappe à la
combustion & qui n’est point alkalié. Cette portion de
nitre qui se trouve défendue par la grande quantité
d’alkali dont il est enveloppé, exige enfin une calci-
nation très-longue dans de vaisseaux ouverts & fans
fusin si l’on veut l’alkaliéer entièrement. On recon-
noit que le nitre fixé ne contient plus de salpêtre non
décomposé, en verifiant sur une portion de cet alkali de
l’acide vitriolique concentré, lequel dans ce cas ne fait
point exhaler de vapeurs d’acide nitreux, comme cela
ne manque pas d’arriver lorsque le nitre fixé contient
encore du salpêtre non décomposé.

Toutes les espèces d’alkalis dont on vient de parler,
lorsqu’elles sont amenées au plus grand degré de pur-
eté, ont absolement les mêmes propriétés, & ne
doivent être regardées que comme un seul & même
alkali, auquel on doit donner le nom d’alkali fixé
végetal. La purification de cet alkali dont on a déjà
parlé, rencontre dans la pratique des difficultés con-
dérsables, dont il est bon de dire un mot. La plus grande
de ces difficultés concerne l’évaporation & la délisca-
tion des leillis alkaliens, & cela relativement à la
nature des vaisseaux. Ceux qui font faits avec les mé-

Alkali fixe du nitre.

Le nitre ayant pour base un fel alkali fixe de la na-
ture de l’alkali végétal, & l’acide de ce fel étant sus-
ceptible de se décomposer & de se détruire totalement
par la combustion, on parvient, en faissant brûler ou
détonner le nitre avec des matières combustibles, à
obtenir séparément son alkali, qui porte en général
le nom de nitre alkalié, ou de nitre fixé. Comme

Cette combusion du nitre est très-rapide, & que dans

ALKALI FIXE VÉGÉTAL
ALKALI MINÉRAL ou ALKALI MARIN.

Les vaisselles de terre vernissée, qui forment la poterie commune allant au feu, ne peuvent servir; parce qu'ils ne sont pas entièrement cuits: les lessives alkalines les pénètrent presque facilement qu'un filtre. Si l'on veut le servir de vaisselles non métalliques, il faut qu'ils soient de verre, de porcelaine ou d'argile presque pure, durcie à un feu violent et cuite en grès. Tous ces vaisselles résistent parfaitement bien à l'action de l'alkali fixé, mais ils sont très-fuïts à se cailler par la chaleur.

L'alkali fixé bien préparé doit être conservé, soit sec, soit en liqueur, dans des flacons de cristal, boucches en cristal; il faut avoir attention, lorsqu'on veut le servir de celui qui est en liqueur, de le décanter doucement de deflis le dépôt qui se forme toujours au fond des flacons.

ALKALI MINÉRAL ou ALKALI MARIN. L'alkali minéral, nommé aussi alkali marin, est une substance saline, alkaline & fixe, qui fera de base à l'acide du fel commun, & qui forme avec lui le fel neutre naturel, diffus en grande quantité dans l'eau de la mer, & connu sous le nom de fel marin ou fel commun. Comme ce fel est une production de la nature, & qu'il n'appartient ni au regne végétal, ni au regne animal, on le range dans la classe des minéraux. C'est par cette raison qu'on a donné à son alkali le nom d'alkali minéral: ce n'est pas qu'on en retire, par l'incinération de plusieurs végétaux, une quantité considérable de cet alkali, mais son origine est toujours la même, & il n'est pas plus végétal pour cela; la raison en est qu'il vient, comme on le verra bientôt, du fel commun contenu dans ces végétaux. On indiquera la manière de se procurer cet alkali dans sa plus grande pureté, après avoir parlé de ses propriétés.

ALKALI MINÉRAL ou ALKALI MARIN. L'alkali fixé minéral a essentiellement, & pour le fond toutes les propriétés de l'alkali fixé végétal; il a la même saveur, la même fixitée; il diffus toutes les mêmes substances, & présente avec elle des phénomènes très-analogues; il fond & vitrifie, comme lui, toutes les terres; il est altéré par la chaux de la même manière; il se combine jusqu'au point de dissolution avec tous les acides, & forme avec eux des fels neutres; il a la même action que l'alkali fixe végétal sur les substances métalliques, & forme comme lui des savons avec toutes les huiles & les matières huileuses. C'est pourquoi il est très-efficace, pour avoir une idée justre des propriétés alkalines de cette substance saline, de lire exactement & en entier tout le détail qui se trouve aux mots ALKALI & ALKALI FIXE VÉGÉTAL. Mais il diffère aussi affez considérablement de l'alkali fixe végétal par plusieurs propriétés qui lui font particulieres, & c'est sur ces dernières qu'on doit infilter singulièrement dans cet article.

L'alkali fixé minéral, qu'on suppose ici dans son plus grand degré de pureté, diffère de l'alkali fixé végétal:

1. Par sa saveur, qui est un peu moins corrosive & moins brûlante: mais cette différence & fort légère.

2. Lorsqu'il est réduit à ficcitée, il n'attire point affez l'humidité de l'air pour s'y réfouler en liqueur, comme le fait l'alkali fixe végétal.

3. Si on le dissout dans l'eau lorfqu'il est sec & calciné, il ne s'échauffe point tant.

4. Lorsqu'il est dissous dans l'eau, si l'on traite cette dissolution par évaporation & refroidissement, l'alkali minéral se coagule en crystaux, précisément comme le font les fels neutres; en quoi il diffère du fel alkali fixe ordinaire ou végétal, qui, lorsqu'il est bien calciné, est très-déliquecent, & ne se cristallise que lorsqu'il est uni avec beaucoup de gaz méphysétique.

L'alkali minéral retient moitié & plus de son poids d'eau dans sa cristallisation; il paraît qu'il a peu d'adhérence avec cette eau, car il en perd la plus grande.
ALKALI MINÉRAL ou ALKALI MARIN.

parce par la seule exposition & dessiccation à l'air libre; ses cristaux perdent en même temps la forme & la transparence, qu'ils ne doivent, de même que tous les autres cristaux des fels, qu'à l'eau de leur crystallisation. Les cristaux de l'alkali minéral, ainsi privés de l'eau de leur crystallisation, se réduisent sous la forme d'une poussière blanche; c'est pourquoi, s'il on veut les conserver, il faut les enfermer dans une bouteille auffitôt qu'ils sont égoutés.

Les différences qui viennent d'être énoncées entre l'alkali végétal & le minéral, indiquent que ce dernier possède les propriétés salines dans un degré moins éminent.

5. L'alkali fixe minéral diffus par la fusion & convertit en verre toutes les terres comme l'alkali végétal; mais on a observé que, toutes choses égales d'ailleurs, il vitrifie mieux, & qu'il forme des verres plus solides & plus durables: il y a lieu de croire que cela vient de ce que d'une part, l'alkali minéral est un peu plus fixe au feu que le végétal, & contient une terre mieux combinée; & que d'une autre part, il n'a pas la même qualité déliquescence.

6. Avec l'acide vitriolique l'alkali minéral forme un fel neutre crystallisable, nommé fel de Glauber. Mais ce fel diffère beaucoup du tertre vitriolé par la figure de ses cristaux, qui ont d'ailleurs beaucoup plus gros; par la quantité d'eau beaucoup plus grande qu'il retient dans sa crystallisation; par sa diffusibilité dans l'eau qui est beaucoup plus considérable; enfin, par le peu d'adhérence qu'il a avec l'eau de sa crystallisation. Cette propriété est telle, que le fel de Glauber expose à l'air, y perd l'eau de sa crystallisation, ainsi que sa transparence & sa forme, & s'y change en une poussière blanche comme l'alkali minéral. Comme l'acide est le même dans le tertre vitriolé & dans le fel de Glauber, il est clair que les différences qui se trouvent entre ces deux fels ne peuvent venir que de la nature de leurs bases alkalines. Toutes les propriétés qui distinguent le fel de Glauber du tertre vitriolé, doivent donc être regardées comme des différences entre l'alkali
ALKALI MINÉRAL ou ALKALI MARIN.

sont les substances métalliques, on y remarquera des différences sensibles d’avec les combinaisons pareilles, faîtes avec l’alkali végétal, & l’observation de ces différences ne pourroit manquer de donner de nouvelles lumières sur la nature de cet alkali; mais je ne crois pas qu’on ait fait des travaux particuliers & suffisants sur cet objet.

Plusieurs chimistes de nom ont néanmoins déjà fait des recherches assez considérables sur la nature de l’alkali marin; celui qui a travaillé le premier sur cet objet, est M. Duhamel du Monceau, de l’académie des sciences. Ce savant a détaillé dans plusieurs Mémoires un grand nombre d’expériences qu’il a faites pour décomposer le fel commun, de manière qu’il put avoir la base alkaline pure & pure, afin de bien examiner ses propriétés. Le fel commun ne pouvant se décomposer par la seule action du feu & sans intermédiaire, il fallait en trouver un qui pût enlever l’acide marin, sans refuser combiné avec la base alkaline. Le phlogistique produisant très bien cet effet sur les fels neutres, qui sont composés d’un alkali fixe & des acides vitriolique ou nitreux, il étoit naturel d’essayer de séparer l’acide du fel commun d’avec son alkali par le même intermédiaire. C’est avec ce qu’a fait M. Duhamel, mais sans pouvoir y réussir, quoiqu’il ait éprouvé sur cela, dans ses expériences, toutes les ressources de la chimie la plus éclairée. La même chose est arrivée à M. Margraf, qui a inutilement tenté de combiner l’acide marin avec le phlogistique, dans l’intention de produire du phosphore, & qui a d’ailleurs fait aussi beaucoup d’autres recherches importantes sur la nature de l’alkali marin. (Opusc. chym.) Il paraît donc constant que l’art ne fournit point encore de moyens de décomposer le fel commun par le phlogistique.

Il y a néanmoins tout lieu de croire que cette décomposition n’est point impossible, & qu’elle a même lieu tous les jours dans la combustion des plantes maritimes du genre des alkalis, qui contiennent toutes du fel marin, & dont les cendres fournissent une quantité assez considérable d’un alkali crystallisable, lequel com-

ALKALI MINÉRAL ou ALKALI MARIN, 121

biné avec les acides vitriolique & nitreux, forme du fel de Glauber & du nitre cubique absolument semblables à ceux qu’on obtient en décomposant le fel commun par ces deux acides. Il est vraisemblable que cet alkali cristallisable, qu’on retire des cendres des plantes maritimes, vient d’une portion du fel marin, contenu naturellement dans ces plantes, dont une partie, se décomposant par l’effet même de la combustion, quoique bien constaté par les expériences de MM. Rouelle & Montet, que ces plantes contiennent aussi de l’alkali marin libre, même avant leur combustion. Voyez l’article ALKALI FIXE VÉGÉTAL.

Quoi qu’il en soit, il est bien constaté que cet alkali cristallisable, qu’on retire des plantes maritimes, est absolument de même nature que la base alkaline naturelle du fel commun: c’est une vérité qu’aucun chimiste ne révoque en doute, & il n’en est pas de même de la nature saline alkaline de cette substance.

Les recherches de M. Duhamel lui avoient démontré qu’elle a des principaux caractères d’un alkali salin, & il en a conclu qu’elle est telle en effet. Le célèbre M. Pott, au contraire, qui a fait aussi de très grands travaux sur cette matière, a toujours soutenu que ce n’étoit qu’une pure terre, qui n’a point les caractères d’un fel alkali. Cette diversité de sentiments a occasionné entre ces deux savans une discussion littéraire, de la nature de celles qui tourment toujours à l’avantage des sciences; elle a fait faire une grande quantité de belles expériences, qui ont jeté beaucoup de jour sur cette matière.

La plus forte preuve que M. Pott ait apportée de son sentiment, se trouve dans des éclaircissements donnés à la suite de la traduction française de sa Lithogéognosie. “On précipite, dit M. Pott, par un alkali fixe ou volatile de l’eau mère du fel marin, une terre infinipide & parfaitement in soluble; cette terre, unie à l’acide vitriolique, donne un fel de Glauber, parfaitement semblable à celui qu’on prépare avec le fel marin. Ce fel de Glauber produit, avec les charbons, un corps alkali salin, qui n’est plus précipi-
ALKALI MINÉRAL ou ALKALI MARIN.

Table par le sel alkali végétal; ce qui arrive pré-
cifément de même au sel de Glauber, préparé avec
le sel marin. Ce sel alkali, ajoute M. Pott, n’est pas
dû à l’acide vitriolique, ni aux carbons ajoutés,
mais principalement à cette terre du sel, que j’appel-
lerai, à cause de cela, une terre alkali, trés-
voilée de l’état salin, ou qui est très-propre à pren-
dre dans les autres acides une portion convenable
de leur partie la plus subtile, par la combinaison
& l’altération de laquelle elle devient un véritable
alkali.

Il paroit au reste, que d’après les propriétés essen-
tielles des sels alkalis fixés, & celles de la base du sel
marin, il est facile de prendre un parti: on ne peut
rien dire de plus fené au sujet de cette discussion entre
M. Duhamel & M. Pott, que ce qu’a dit le savant &
judicieux traducteur de la lithographie de ce der-
nier; savoir, “qu’au fond cette question se réduit pré-
rentement à une dispute de mots, puisque M. Du-
hamel convient avec M. Pott, que la base du sel
marin diffuse de l’alkali fixe du nitre & autres fém-
blables; & que M. Pott convient avec M. Duhamel,
qu’elle diffuse des terres absorbantes ordinaires;
mais que, jusque à présent, il parait que l’expression
de M. Duhamel est plus juste & plus conforme à la
definition des substances salines.

Il faut conclure de tout cela, que la base du sel
marin, n’est, ni une pure terre, ni un alkali semblable
to celui qu’on retire des végétaux qui ne con-
tiennent point de sel marin, mais une substance saline
alkali, d’une nature particulière: & s’il est per-
mis de faire quelques conjectures sur la nature de cet
alkali, je ferais porter à croire qu’il diffère de l’alkali
végétal, ou parce qu’il entre dans sa composition une
plus grande quantité de terre, ou parce que son prin-
cipe terres lui est uni d’une manière plus intime.

M. Baume (Chym. exp. & raif. tom. 1, p. 324.)
dit que lorfqu’on fait calciner du tartre dans des vais-
seaux clos, comme dans une couronne, il y a une bonne
partie du sel alkali qui se crystallise, & que cet effet

Vient du phlogistique qui convertit une partie de ce
sel en crystaux de soude ou en alkali marin.

Au reste, ce qui fait bien voir que la base alkali
du sel commun est vraiment de nature saline, c’est qu’on
l’emploie dans tous les arts aux mêmes usages que
l’alkali fixe végétal, avec succès, & même souvent
avec avantage, ainsi qu’on la dit plus haut.

Le seul moyen de pratique qu’on ait de de procurer
cet alkali en grande abondance, est l’incinération des
plantes maritimes. Ces cendres sont très-riches en sel
alkali marin, quand les plantes qui le fourmissent
croissent dans un pays, & dans un climat favorable;
& l’alkali marin qu’elles contiennent, se trouve plus
ou moins pur, suivant leur nature & celle du terrain.
Ces cendres sont connues en général, dans le com-
merce, sous le nom de soude. On emploie la soude
dans beaucoup d’arts telle qu’elle est, & sans en ex-
taire d’abord l’alkali marin, par conséquent sans le
purifier. Aussi remarque-t-on des différences confi-
dables entre les soudes, dont les unes sont infiniment
meilleures, plus recherchées, & plus chères que les
autres.

Comme les affinités chymiques & les vertus médi-
cinales de l’alkali minéral & de l’alkali végétal font
les mêmes, on va dire ici ce qu’il y a de plus essentiel
faut ces objets.

La table des affinités de M. Geoffroi donne celles
de l’alkali fixe de la manière suivante: l’acide vitri-
lique, l’acide nitreux, l’acide marin, l’acide du vina-
gre & le soufre.

Celle de M. Gellert est beaucoup plus étendue sur
ce cet article; elle donne le phlogistique, l’acide vitri-
lique, l’acide nitreux, l’acide marin, l’acide végétal,
le zinc, le fer, le cuivre, le plomb, l’étain, le régulier
d’antimoine, le régulier de cobalt, dearsenic & le bismuth.
L’or & l’argent sont désignés dans cette table,
comme n’étant point dissolubles par l’alkali fixe.

Les alkalis fixes, étant les plus grands absorbants des
acides, conviennent dans les aigres & dans toutes les
maladies ab acido spontaneo, décrites par Boerhaave.
ALKALI VOLATIL.

Ils sont même préférables aux terres absorbantes, (quoique ces derniers soient beaucoup plus utiles) dans les cas où, malgré les signes d'acidité, l'on aurait à craindre une disposition putride : ce qui n'est point impossible, parce qu'en qualité de matières salines, ils sont anti-putrides, suivant les observations de M. Pringle. Si cependant la putréfaction étoit portée jusqu'à l'alkalifécicité, ce qui est très-rare, ils feroient nuisibles, parce qu'ils augmenteroient cette acrimoine alkalifécicité.

Les alkalis purs ne doivent jamais s'ordonner qu'en petites doses, comme depuis un demi-grain jusqu'à deux, lorsqu'ils sont incorporés avec des médicaments solides & réduits sous un petit volume, & depuis un grain jusqu'à trois ou quatre, à cause de leur causticité, en les étendant dans une pinte de quelque véhicule aigueux. Ces substances salines font fondantes, apéritives & lithontriptiques : elles font cependant peu utiles en cette qualité ; leur principal usage est d'être marières avec les purgatifs réfréns, en qualité decorrectifs, parce qu'effectivement ils corrigan très-bien ces médicaments, en leur donnant une qualité savonneuse.

A l'extérieur, ces alkalis font fondans, résolutifs, diffusifs & caustiques.

ALKALI VOLATIL. L'alkali volatil est une substance saline qu'on retire, par la décomposition des matières animales & de quelques substances végétales, & par la putréfaction de toutes ces substances.

Cette matière saline est nommée alkali, parce qu'elle a en effet toutes les propriétés générales des alkalis salins, comme la saveur acre, caustique & brûlante, la propriété de verdiner, la teinture des violettes, de se combiner avec les acides jusqu'au point de saturation, & de former avec eux différents fels neutres, la plus part utilisables de crutilisation, de séparer toutes les matières terres & métalliques qui ont unies aux acides ; enfin, celle de diffoudre, par la voie humide, presque toutes les substances diffusibles par les autres alkalis.

Cette espèce d'alkali porte l'épithète de volatil, parce qu'en effet il a une très-grande volatilité. Il doit cette volatilité à une portion d'huile très-subtile & très-volatile, qui entre dans sa composition comme principe, ainsi que le prouvent les propriétés qui le caractérisent.

L'alkali volatil est différent suivant les différents corps dont il est tiré, & suivant la manière dont il est extrait. Ces différences lui viennent de quelques principes qui lui font furabondants & étrangers, particulièrement de plusieurs huiles dont il n'est pas d'abord exactement séparé ; mais on peut, par les moyens dont on parlera bientôt, purifier exactement les alkalis volatils retirés par la décomposition, ou par la putréfaction, de quelque substance que ce soit, de manière qu'il n'y ait plus aucune différence ; & de là on doit conclure que cette substance, de même que chaque espèce d'alkali fixe, est seule, identique, & toujours semblable à elle-même, lorsqu'elle est amenée au point de pureté convenable.

L'alkali volatil, considéré dans cet état de pureté, diffère des alkalis fixes, d'abord par sa grande volatilité, qui est telle qu'il se sublime ou se diffère en entier, à l'aide d'une chaleur bien inférieure à celle de l'eau bouillante ; par son odeur qui n'est qu'un effet de sa volatilité ; l'odeur de ce sel est forte, très-pénétrante, & si piquante, qu'on ne peut la supporter un instant ; elle est capable de faire perdre connoissance, & de suffoquer, fa vapeur excite la toux, & tire beaucoup de fumées des yeux. C'est ce sel qui fait le piquant de l'odeur qu'on sent dans les latrines aux changemens de temps.

Cet alkali diffère aussi des fixes, par sa moindre force : de là vient que les alkalis fixes peuvent décomposer tous les fels, dans lesquels l'alkali volatil entre comme principe, le séparer de ces fels & le rendre libre.

L'alkali volatil s'unit parfaitement avec l'eau, avec laquelle il a même beaucoup d'affinité, & s'y tient réfus en liqueur : il porte alors le nom d'esprit alkali volatil.

Lorsqu'il ne contient pas d'eau furabondante, &
ALKALI VOLATIL.
qu'il est pourvu de gaz, il est sous forme concrète & même crysralllisée.

Tous les acides s'unissent, comme on l'a déjà dit, à l'alkali volatil avec ou sans effervescence, suivant qu'il est ou qu'il n'est point uni à du gaz, & jusqu'au point de saturation, & forment avec lui des fels neutres, qu'on nomme en général, fels ammoniacaux.

Les fels ammoniacaux ont tous une saveur infiniment plus forte & plus piquante que les fels à bafe d'alkali fixe avec les mêmes acides, parce que l'alkali volatil s'unit aux acides d'une manière moins intense. Ces fels neutres sont demi-volatils; c'est-à-dire qu'ils se subliment, lorsqu'ils éprouvent un degré de chaleur assez fort, & cela, à cause de la volatilité de l'alkali qui leur furent de base.

Le fel ammoniacal que forme l'alkali volatil avec l'acide vitriolique, est susceptible de cristallisation; il le nomme fel ammoniacal vitriolique, & fel ammoniac sacré de Glauber, du nom du chymiste qui l'a fait connaitre le premier.

L'espèce de nitre que fait l'alkali volatil avec l'acide nitreux, se crystallise aussi. Ce nitre a cela de particulier, qu'il détonne seul, lorsqu'il est chauffé jusqu'à un certain point, sans qu'il soit besoin de le mélanger avec aucune matière qui contienne du phlogistique, comme cela est nécessaire pour la détonation du nitre à bafe de fel alkali fixe. Ce phénomène prouve, dans l'alkali volatil, la présence du principe inflammable, dont on a parlé dans sa définition. On nomme ce nitre à bafe d'alkali volatil, nitre ammoniacal, ou fel ammoniacal nitreux.

Avec l'acide marin, l'alkali volatil forme aussi un fel neutre crystallisable; qui porte le nom de fel ammoniacal: c'est le plus usité & le plus anciennement connu des fels ammoniacaux, & celui qui a donné son nom aux autres. Il résulte de la combinaison de l'alkali volatil avec l'acide du vinaigre, un fel acétique ammoniacal, qui se crystallise difficilement, & qui est connu sous le nom d'esprit midererus.

L'alkali volatil peut se combiner avec le foufou, &

ALKALI VOLATIL.
former avec lui une forte de foie de fourtre volatil, dont Hoffmann donne la préparation.

La plupart des matières métalliques sont attaquées, & plus ou moins dissolutes par l'alkali volatil; mais le cuivre est, de tous les métaux, celui que ce fel attaque le plus facilement, & dont il diffus la plus grande quantité. Il suffit de faire digérer de la limaille de cuivre pendant quelque temps dans de l'alkali volatil en liqueur, pour que cette dissolution se fasse. A mesure que ce fel diffus du cuivre, il prend une belle couleur bleue.

Cette dissolution présente un phénomène curieux & intéressant, c'est que si l'on bouche bien exactement le flacon qui la contient, la couleur bleue s'affaiblit, & disparait enfin entièrement, en sorte que la liqueur devient blanche comme de l'eau; mais si, lorsqu'elle est ainsi décroscée, on débouche le flacon, la partie supérieure de la dissolution qui est frappée par l'air extérieur, reprend toute sa couleur bleue, & cette couleur se communique bientôt à tout le reste de la liqueur. On peut faire ainsi paroître & disparoître alternativement cette couleur à volonté, en bouchant & débouchant le flacon.

Les autres matières métalliques ne se laissent pas attaquer par l'alkali volatil, aussi facilement que le cuivre. Ces dilutions mémes ont été fort peu examinées jusqu'à présent.

Lorsque les métaux sont diffus & divisés d'abord par les acides, ils font infiniment plus suscceptibles d'être diffus ensuite par l'alkali volatil; il suffit, pour cela, de verfer dans de l'esprit alkali volatil bien fort, quelques gouttes de la dissolution métallique; il se forme d'abord un précipité qui, lorsqu'on agite un peu la liqueur, diffusera ensuite & est bientôt rediffus par l'alkali volatil. Ceux des métaux qui se diffusent en plus grande quantité par cette méthode, font le cuivre & le mercure.

De quelque manière que le cuivre soit diffus par l'alkali volatil, il communique toujours à ce fel une couleur d'un bleu magnifique & très-foncé. Cette pro-
ALKALI VOLATILE.

Le mettre dans l'état savonneux. L'esprit volatile aromatique huitiers & l'eau de Luce font les principaux composés savonneux qu'on fait avec l'alkali volatil.

L'alkali volatil séparé par distillation des matières végétales & animales, est d'abord, comme on l'a dit, fort impur ; il est altéré sur-tout par le mélange d'une grande quantité d'huile empyreumatique, qui lui est unie dans un état parfaitement savonneux & qui rend très-diffusible dans l'eau. On peut le purifier de cette huile furabondante, en le redistillant à un feu très-doux, & le faire, en même temps que les matières propres & les terres absorbantes. Mais un moyen plus efficace de le purifier, c'est de le réduire en sel ammoniac, & de le décomposer ensuite ce sel par quelqu'un des intermédiaires propres à en dégager l'alkali volatil : on l'obtient par ce moyen dans le plus grand degré de pureté, parce que dans sa combinaison avec l'acide, il se sépare exactement de toute matière étrangère.

Cette substance saline, quelque pure qu'elle soit, peut se trouver, de même que les alkalis fixes, dans deux états bien différents ; savoir, avec la moindre causticité possibles, susceptible de se crytalliser & de faire beaucoup d'effervescence avec les acides ; en le nomme alors alkali volatil doux ou concret : ou avec la plus grande causticité possible, n'étant nullement capable de cristallisation ni d'effervescence avec les acides ; dans ce second état il porte le nom d'alkali volatil caustique ou fluor. Ces différences ont pour cause principale la présence ou l'absence du gaz mëphytique dans l'alkali volatil. Voyez à ce sujet les articles AMMONIAC (SEL), CAUSTICITE, GAZ MÉPHYTIQUE & autres.

Pour les affinités de l'alkali volatil, la table de M. Geoffroi n'indique que les acides vitriolique, nitreux & marin ; celle de M. Gellert établit le phlogistique, les acides vitriolique, nitreux, marin, & celui du vinagre, le zinc, le fer, le cuivre, le bismuth, le mercure, l'argent & l'or.

Tome I.
ALKALISATION.

L’alkali volatile est employé en médecine, comme un puissant stimulant & excitant, en en faîtant respirer la vapeur ; on s’en fera en cette qualité dans les évanouissements, les syncopes, l’apoplexie, les aphties, & dans toutes les maladies fibropoètes, dans le quels il y a engourdissement & atonie des parties nerveuses ; on fait respirer, dans tous ces cas, des flacons qui le contiennent, ou en forme concrète & sous le nom de sel d’Angleterre ; ou en forme fluide, ajouté avec de l’huile de succin dans un état demi-févvinneux, & portant le nom d’eau de Luce.

On en peut faire prendre aussi intérieurement dans ces mêmes cas, sur-tout dans l’apoplexie & dans les maladies fibropoètes, mais en petites doses, comme depuis deux ou trois grains jusqu’à fix, dans des mixtures stimulantes : pris de cette manière, il est quelquefois un fort sudorifique.

M. Bernard de Jussieu a découvert aussi que cette substance saline est une étope de spécificité contre la mort de la vipère ; ayant guéri, comme par miracle, par le moyen de l’eau de Luce, un étudiant en médecine, qui étoit à sa suite dans une herborisation, & à qui cet accident étoit arrivé.

ALKALISATION. Ce nom convient aux opérations par lesquelles on communique à un corps des propriétés alkalines, & à celles par lesquelles on en extrait l’alkali qui contiennent différentes substances, ou qui peut s’y former. On dit, par exemple, en parlant de l’esprit de vin qui a été mis en digestion tur de l’alkali qui a diffusé une petite quantité de ce sel, & qui en conséquence a des propriétés alkalines, que cet esprit de vin est alkaliifié.

D’un autre côté, lorsqu’on décompose un sel neutre à base d’alkali, pour obtenir séparément cet alkali, on dit qu’on a alkaliifié ce sel. Ainsi le nitre dont on a enlevé & détruit l’acide, en le faînant détonner avec des matières qui contiennent le phlogistique, telles que le charbon, le tartre, les métaux, &c, enforçant qu’il ne reste plus que son alkali, est nommé nitre alkaliifié par les charbons, par le tartre, &c.

ALLIAGE.

On pourrait dire aussi qu’on alkaliifie les substances végétales qu’on réduit en cendres, parce que ces cendres contiennent l’alkali fixe, fourni par ces substances. Voyez le détail des alkalisations particulières, aux articles des différents ALKALIS.

ALKOOL. Ce nom a été donné aux substances réduites en poudre impalpable.

On l’a donné aussi à l’esprit de vin rectifié à demier degré.

ALLIAGE. Ce nom est employé en chymie pour désigner l’union des différentes matières métalliques les unes avec les autres.

Comme il peut résulter une infinité de combinaisons différentes, suivant la nature, le nombre & les proportions des matières métalliques qui font susceptibles de s’allier, on n’entendra point ici dans le détail des alliages particuliers qui ne sont pas même encore tous connus à beaucoup près. On trouvera ceux qui sont d’usage, comme bronze, tombac, cuivre jaune, similor, cuivre ou tombac blanc, &c. Sous leurs dénominations parti-culieres ; & ce que l’on connoit des autres, en partie sous le nom des divers métaux & demi-métaux, & en partie dans ce présent article.

Les substances métalliques ne peuvent contracter aucune union directe avec les matières terreuses, pas même avec leurs propres terres, lorsqu’elles sont privées du principe inflammable, & par conféquent aussi des propriétés métalliques. Mais on peut dire qu’en général tous les métaux s’allient les uns avec les autres, quoiqu’avec plus ou moins de facilité, & quoiqu’il y en ait aussi quelques-uns qu’on n’ait pas encore pu jusqu’à présent unir ensemble.

Comme les métaux font des corps naturellement solides, la première condition pour leur union est qu’ils soient en fusion : ils s’unissent alors, comme tous les corps qui se dissolvant réciproquement ; & il résulte de ces combinaisons, de nouveaux composés qui ont les propriétés mixtes des substances composantes.

Il se présente néanmoins dans ces alliages métalliques, comme dans presque toutes les autres combinaisons.
fonds, des phénoménes qui restreignent, à certains égards, les règles générales des combinaisons. Ainsi on observe que quelques-unes des propriétés des métaux qui forment un alliage, sont altérées, augmentées ou diminuées par cette union même. La ductilité, par exemple, d'un métal composé de deux ou plusieurs autres métaux, est communément moindre que celle des mêmes métaux, lorsqu'ils sont feuls & parfaitement purs; la densité ou pesanteur spécifique des métaux & des demi-métaux change aussi dans leurs alliages; quelquefois la pesanteur du métal mixte est moyenne entre celle des métaux qui le composent, quelquefois elle est moindre, souvent elle est plus grande: cela dépend de la nature des métaux. On peut dire aussi la même chose de la couleur des substances métalliques, alliées les unes avec les autres.

Les alliages des métaux font, ou naturels, ou artificiels. Les premiers sont ceux qui sont faits par la nature, tels que le font la plupart des minéraux qui contiennent tous plusieurs métaux alliés les uns avec les autres; l'or natif qui est toujours plus ou moins allié d'argent, l'argent natif qui contient aussi toujours plus ou moins d'or.

Les alliages artificiels sont ceux qu'on fait exprès de plusieurs métaux les uns avec les autres, pour différents usages, ou pour examiner leurs propriétés dans ces mélanges.

Quoique les alliages des différentes matières métalliques les unes avec les autres soient d'une très-grande importance, tant pour la théorie que pour la pratique de la chimie, il ne paroit pas qu'on ait fait encore sur cet objet toutes les recherches dont il est susceptible, & qu'il mérite. M. Gellert est un de ceux qui s'en est le plus occupé; on trouve dans sa 'Chimie métallurgique' un fort grand nombre d'expériences, qu'on va rapporter ici sommairement. Celles de ces expériences qui ont été faites sur les alliages des demi-métaux avec les métaux, sont de M. Gellert lui-même: il les a entrepris pour déterminer ce qui concerne la densité ou pesanteur spécifique de ces alliages; il

L'or s'unit facilement avec l'argent, & en toutes proportions. M. Gellert dit que l'alliage de ces deux métaux s'accorde assez pour l'ordinaire avec les règles de proportion de l'alliage, & que la pesanteur spécifique n'est augmentée que de très-peu de chose. Cet alliage est peu d'usage dans les arts; mais il l'a été dans les monnoies: comme les métaux purs sont toujours plus ductiles que les métaux alliés, dans les arts où l'on a besoin de toute la ductilité de ces métaux, comme dans ceux du tireur & du batteur d'or, on choisit toujours l'or & l'argent les plus purs.

L'argent s'allie facilement & en toutes proportions avec le cuivre; ce dernier métal s'unit de même avec l'or. M. Gellert remarque que l'alliage de l'argent avec le cuivre est d'une pesanteur spécifique plus grande que les proportions de l'alliage ne sembler ont indiquer, mais qu'au contraire celui de l'or avec le cuivre est d'une pesanteur moindre. Le cuivre rend l'or & l'argent plus durs & plus fonores, sans cependant diminuer beaucoup leur ductilité: il a même la propriété remarquable de rendre ces deux métaux moins fusceptibles de la perdre par la vapeur du charbon, ce à quoi ils sont très-fusjets: le cuivre rehausse aussi la couleur de l'or. Les propriétés du cuivre, relativement à l'or & à l'argent, rendent son alliage avec ces métaux, d'un très-grand usage dans l'orfèvrerie, parce qu'il rend les ouvrages qu'on en fait plus fermes & plus propres à être travaillés, & dans la monnoie pour la même raison, & de plus, pour les droits du prince, & pour payer les frais de la fabrique de la monnoie. La quantité de cuivre qu'on allie avec l'or & avec l'argent pour ces différents usages, varie suivant les différents pays, mais...
ALLIAGE.

elle est ou doit être déterminée, fixe & constante dans chaque pays.

Le fer s'allie bien avec l'argent, & encore mieux avec l'or. M. Gellert observe que l'alliage de l'or avec le fer est plus léger qu'il ne semblerait devoir l'être. Cependant l'affinité de ces deux métaux est très-grande, car l'or facilite la fusion du fer, ce qui indique toujours dans deux métaux une très-grande disposition à s'unir ensemble. M. Gellert remarque, à l'occasion de cette propriété, que l'or vaudrait mieux par cette raison que le cuivre, pour fonder les petits ouvrages de fer ou d'acier. Le fer ne s'unit au cuivre que difficilement & en petite proportion, il rend la couleur de ce métal plus pâle; la portion de fer qui, dans une fonte, n'a pu s'allier avec le cuivre, forme un régime séparé qui cepen- dant est fort attaché à la surface du régime de cuivre. Les degrés d'affinité du fer avec les autres métaux, suivant la table de M. Gellert, en renverifiant l'ordre dans lequel il les a marqués (c'est-à-dire, en commençant par ceux avec lesquels il a la plus grande affinité, ce qui paroit plus naturel) sont, l'or, l'argent & le cuivre.

L'étain, suivant le même auteur, s'unit avec tous les métaux, & les rend aigres; le fer & le plomb font ceux qu'il altere le moins à cet égard: l'or & l'argent font au contraire ceux auxquels l'étain donne le plus d'âgeur; cela va même au point qu'une très-petite quantité d'étain, la seule vapeur même de ce métal, est capable d'entraîner la ductilité à une grande quantité de ces métaux, comme cela est suffisamment connu de ceux qui les travaillent.

L'alliage de l'étain avec l'or & l'argent n'est donc d'aucun usage; au contraire, on l'évite avec le plus grand soin: mais avec le cuivre l'étain forme un métal allié, connu sous le nom de bronze ou d'airain, qui est fort utile. L'alliage de l'argent & du cuivre avec l'étain est d'une pesanteur spécifique plus grande, & celui de l'or avec l'étain est d'une pesanteur moindre que la règle de l'alliage ne semblerait l'indiquer. La table des affinités de M. Gellert donne pour celles de l'étain avec les autres métaux, en les nommant toujours dans un

ordre renversé du sien, comme on le voit toutes les fois qu'il en sera question, le fer, le cuivre, l'argent & l'or.

Le plomb s'unit avec tous les métaux, à l'exception du fer, avec lequel on n'a pas pu l'allier jusqu'à présent. M. Gellert observe à ce sujet, que cette propriété du fer à l'égard du plomb le rend propre à séparer ce dernier métal d'avec les autres, pourvu que le métal dont il s'agit de le séparer n'aît pas plus de disposition à s'unir avec le plomb, que n'en a le fer. Qu'il y a de certain, c'est que le plomb lui-même peut servir d'intermédiaire pour séparer le fer d'avec d'autres métaux, par exemple, de l'argent: car, si l'on fait fondre une suffisante quantité de plomb avec de l'argent allié de fer, le plomb s'empare de l'argent très-facilement, & en sépare le fer qu'on voit venir nager à la surface de ces deux métaux fondus.

L'alliage de l'or & de l'argent avec le plomb est d'une pesanteur spécifique plus grande que la proportion du mélange ne semblerait l'annoncer, au lieu que le métal composé de cuivre ou d'étain avec le plomb, est d'une pesanteur spécifique moindre.

L'alliage du plomb avec les autres métaux est en usage pour les essais des mines, pour l'affinage & pour la liqution.

On allie aussi le plomb & l'étain ensemble, pour en former la foudre propre aux tuyaux & autres ouvrages en plomb, ou pour les calquer ensemble & en faire le blanc nommé calcine, qui fait partie de l'émail blanc.

La table des affinités de M. Gellert ne donne, pour celle du plomb avec les autres métaux, que l'argent, l'or, l'étain & le cuivre.

Le zinc s'allie avec toutes les matières métalliques, à l'exception du bismuth avec lequel il ne peut s'unir, suivant M. Gellert. Ce demi-métal, en s'unissant aux autres substances métalliques, rend plus fusibles celles qui sont plus difficiles à fondre que lui. Les alliages de l'or, de l'argent, du cuivre & du plomb avec le zinc, font d'une pesanteur spécifique plus grande; ceux de ce même demi-métal avec l'étain, le fer & le régule.
Les alliages du zinc avec la plupart des matières métalliques ne sont point utiles dans les arts, mais celui de ce demi-métal avec le cuivre l’est beaucoup ; c’est lui qui forme le cuivre jaune, les tombac, le similor, &c. Les affinités du zinc avec les autres matières métalliques sont, suivant la table de M. Gellert, dans l’ordre suivant : le cuivre, le fer, l’argent, l’or, l’étain & le plomb ; mais il est marqué, pour ce dernier métal, en particulier, c’est-à-dire apparemment, que le zinc ne s’unit point au plomb dans toutes sortes de proportions.

Le bismuth s’unit avec tous les métaux, & avec la plupart des demi-métaux ; cette substance métallique a même une telle action sur les autres, qu’elle facilite sensiblement leur fusion. Le bismuth rend tous les métaux, auxquels il est uni, aigres & caillants ; il ne s’unit point au zinc, ni suivant M. Gellert, à l’arsenic : quand on le fait fondre avec le zinc, il occupe le fond du creuset, comme plus pesant, & le zinc se place sur le bismuth. Lorsque le tout est refroidi, l’on voit, en caillant le crible, que ces deux demi-métaux sont séparés, & forment deux couches distinctes appliquées l’une sur l’autre, & qui adhèrent l’une à l’autre assez fortement. L’or, l’argent, le plomb & le régule d’antimoine forment avec le bismuth des alliages d’une peinture spécifique plus grande : celui du fer avec ce demi-métal est d’une peinture spécifique moindre, & enfin celui du cuivre s’accorde avec les proportions observées dans le mélange.

Les alliages du bismuth ne font point d’usage ; si ce n’est peut-être pour quelques compositions particulières de métaux à faire des miroirs.

La table de M. Gellert donne, pour les affinités des métaux avec le bismuth, le fer, le cuivre, l’étain, le plomb, l’argent & l’or.

Le cobalt (a), dit M. Gellert, s’allie avec tous

(a). C’est sans doute ce que nous nommons ici régule de
L'Alliage.

Règle avec du bismuth, ces deux demi-métaux se sépa-
roient, le bismuth occupant la partie inférieure, & le
cobalt la partie supérieure du culot.

Les alliages du règle de cobalt ne sont encore que
peu connus, & point d'usage dans les arts.

La table des affinités de M. Gellert désigne les affi-
nités du règle de cobalt avec les matières métalliques,
dans l'ordre suivant : le cuivre, le fer, l'étain, le zinc,
le règle d'antimoine, le bismuth & le plomb; l'ar-
gent, l'arsenic (en partie).

Le règle d'antimoine peut s'allier avec presque tou-
tes les substances métalliques. M. Gellert dit que les
alliages de ce règle avec le fer, l'étain & le zinc, ont
une peinture spécifique moindre qu'ils ne devroient
l'avoir, suivant les règles de l'alliage; & que ceux de
ce même règle avec l'argent, le cuivre, le plomb &
le bismuth, ont une peinture spécifique plus grande;
il remarque aussi que le règle d'antimoine, allié avec
le fer, diminue beaucoup plus que toute autre sub-
tance métallique la propriété qu'a ce métal d'être attiré
par l'aimant.

Les alliages du règle d'antimoine sont peu usités
dans les arts; ce demi-métal entre cependant dans
quelques compositions particulières pour des miroirs.
On prepare aussi un médicament, connu sous le nom
de lilium de Paracelse, ou teinture des métaux, pour
lequel on allie ce règle avec le fer, l'étain & le cuivre.

Les affinités des substances métalliques avec le règle
d'antimoine sont, suivant la table de M. Gellert, dans
l'ordre suivant : le zinc, le cuivre, l'étain, le plomb,
le plomb & l'or; le bismuth est désigné dans cette table,
come ne pouvant point s'unir avec le règle d'anti-
moine.

L'arsenic ou fon règle s'unit avec la plupart des ma-
tières métalliques; il blanchit le fer, dit M. Gellert,
mais l'alliage qui en résulte est très-cassant. Le cuivre
devient très-blanc par fon alliage avec l'arsenic, comme
tout le monde le fait; cet alliage forme le tombac blanc
qui imite beaucoup l'argent. Mais M. Gellert avance
que, malgré l'alliage de l'arsenic, le cuivre demeure

Alliage.

Affez ductile & malleable; ce qui est très-remarquable;
cependant il cet alliage contient une trop grande quan-
tité d'arsenic, il devient aigre, cassant, & noirci à la
surface. L'arsenic un à l'étain, se réduit en partie en
une poudre semblable à de la cendre, dans laquelle il
reste beaucoup d'arsenic; le reste de l'étain est très-
brillant, d'un tissu feuilleté, & ressemblant extérie-
urement au zinc, sans cependant en avoir les proprié-
tés: l'étain devient aussi beaucoup plus dur & plus
fonore par fon union avec l'arsenic.

Le plomb uni avec l'arsenic donne de la fumée & se
gonfle plus promptement à un feu modéré, qu'il ne
feroit s'il estoit pur; pour lors une partie s'en diffipe
sous la forme d'une fumée fort épaissie; une autre partie
se change en un verre d'un jaune rougeâtre, & le plomb
qui reste devient aigre, cassant & d'une couleur foncée.
L'arsenic s'unit avec l'argent, & le rend cassant: il en
est de même de l'or; mais de plus, il le pâlit & lui
enlève sa couleur. Cette matière métallique s'unit très-
difficilement avec le cobalt; quand il y est uni, il forme
une matière noirâtre & luisante; enfin, toujours suivant
M. Gellert, dont tout ceci est tiré, le bismuth ne peut
point contracter d'union avec l'arsenic.

On voit, par la table des affinités de cet auteur, que
les métaux s'unissent à l'arsenic dans l'ordre suivant,
qui est le même que celui pour le règle d'antimoine :
le zinc, le fer, le cuivre, l'étain, le plomb, l'argent,
le plomb & le règle d'antimoine.

Ceux des alliages de l'arsenic, qui sont usités pour
les arts, font le tombac blanc, & quelques compositions
particulières pour les miroirs de métal.

Il est essentiel de remarquer, au sujet des alliages de
l'arsenic, que cette substance argileuse a la propriété
de s'unir aux métaux, lors même qu'elle est privée de
phlogistique, & qu'elle ne soit point, dans l'état
métallique; ce qui vient de son caractère salin, & de
la propriété qu'à l'arsenic de s'emparer d'une partie du
phlogistique des métaux imparfaits & des demi-mé-
tax; il doit, en conséquence de cela, se trouver des
différences entre les alliages faits avec l'arsenic blanc.
La fusilité, par exemple, doit varier considérablement dans les différents alliages ; on en a une preuve bien sensible dans celui de l'étain, du plomb et du bismuth ; ces trois métaux unis ensemble forment toujours un mélange ou un métal composé beaucoup plus fusible qu'aucun d'eux ne l'est séparément, ou même qu'ils ne le sont alliés deux à deux. Newton, Muffchenbroeck & Homberg avaient fait quelques expériences sur les proportions de ces trois métaux, pour en composer un alliage très-fusible ; mais M. d'Arcet qui a si bien mérité de la chimie par ses travaux les plus importants, vient de publier dans le Journal de médecine (juin 1775) les recherches qu'il a faites pour trouver les proportions de ces mêmes métaux qui donnent l'alliage le plus fusible. Elles font de huit parties de bismuth, cinq parties de plomb, et trois parties d'étain. La fusilité de cet alliage est telle que le métal composé qui en résulte, se fond et devient coulant comme du mercure, non seulement dans l'eau bouillante, mais même au bain-marie. M. d'Arcet remarque « que les alliages de ces trois métaux en différentes proportions, quoiqu'ils soient aigres, le laissent frotter pourtant couper au couteau, qu'ils font d'un brun noircir et ternir dans la caillasse ; que dans quelques-uns le grain est affilé gros, et que dans d'autres il est très-fin ; qu'ils sont plus ou moins blancs, quand on les coule dans la lingotière ; que celui de Homberg, par exemple (partie égale des trois métaux), a la blancheur de l'argent ; mais que tous se ternissent facilement à l'air, & plus promptement encore lorsqu'on les fait bouillir dans l'eau, où ils se couvrent d'une pellicule sensible, ridée & à demi calcinée, qui s'en détache peu, sous la forme d'une poudre noire. »

Quoi qu'il rette, comme on voit, une infinité de belles expériences à faire sur les alliages des métaux, ce qu'on a fait jusqu'à présent sur cette matière suffit néanmoins pour établir quelques vérités générales. On en a exposé plusieurs au commencement de cet article ; en voici encore une qui résulte évidemment des...
ALUDELS. Les chimistes nomment aludeles des espèces de pots ou de chapiteaux ouverts par leur partie inférieure & supérieure, & qui peuvent s’emboîter ou s’appliquer exactement les uns sur les autres ; enfin qu’ils forment un tuyau plus ou moins long, suivant le nombre d’aludeles dont il est composé : le pot ou l’aludel qui termine ce tuyau par en-haut, doit être fermé dans sa partie supérieure, ou n’avoir qu’un petit trou. Le tuyau d’aludeles n’est donc qu’une espèce de chapiteau qu’on peut amplifier ou aloncer à volonté, & qu’on adapte à une cucurbité. Cet appareil est destiné pour raflembler & pour retenir les matières fèches & volatiles, qu’on veut réduire en fleurs par la sublimation : on peut s’en servir pour faire les fleurs de soufre, d’arsenic, d’antimoine, de benjoin, &c. Voyez SUBLIMATION.

ALUN. L'alun est un sel crysatllisable, composé d'acide vitiolique, uni à une terre argileuse. Ce sel a une saveur acérée, douçâtre & fortement affirnissante. Cette saveur forte lui vient de ce que son acide est moins parfaitement saturé par la base, qu’il ne l’est dans d’autres fels vitioliques à base terreuse, telle que l’el, par exemple, la féltéière qui n’a point de saveur sensible. M. Baume a même observé que l’acide dans l’alun n’est pas exactement au point de fation ; qu’il rougit un peu la teinture de tournefol & le papier bleu, & qu’on peut achever de le saturer avec de la terre même d’alun ; enfin que le sel parfaitement neuf, qui en résulte, n’a plus de saveur ni de dissolubilité que la féltéière.

Ce sel se diffusse assez bien dans l’eau froide, mais en beaucoup plus grande quantité dans l’eau bouillante. Il est par conséquent susceptible de se crystalliser par évaporation & par refroidissement de l’eau qui le tient diffus.
La figure des crytaux de ce sel est sujette à beau-
coup de variété, comme celle de tous les autres,
suivant les circonstances qui concourent à fa crys-
tallisation. Lorsqu'on fait refroidir très lentement fa
diffusion évaporée au point de la crystallisation, on
trouve le plus grand nombre de fes crytaux figurés
en pyramides triangulaires, dont les quatre angles
solides sont coupés.

L'alun retient beaucoup d'eau dans fa crystallisation,
 cela va à peu près à moitié de son poids.

Cette grande quantité d'eau de crystallisation, jointe
à la propriété qu'a ce sel de se diffuser dans l'eau
en quantité d'autant plus grande qu'elle est plus chaude,
est la cause que, quand on le met dans un vase de
terre ou de fer sur un bon feu, il entre en une liqui-
dfaction qui diminue en vue par degrés, à mesure que
fon eau de crystallisation s'évapore. Quand elle est
entièrement évaporée, ce qui est assez long, l'alun qui
s'est beaucoup raréfié & bourbouillé pendant cette évap-
oration, réflé à son une forme feche, & il est alors
très-fiable : on le nomme dans cet état alun calciné.

On peut, après cette évaporation, le rediffuser de
nouveau dans l'eau, & le rétablir en crytaux tel qu'il
étoit.

Quoique l'acide de l'alun paroisse, ainsi que l'in-
diquent la saveur & la disloabilité, moins intimement
combiné avec fa terre que ne l'est celui du sel vitrioli-
que à base de terre calcaire ou de la félénite, cepen-
dant l'action du feu le plus fort ne peut détacher qu'une
forte petite quantité de l'acide de ce sel. M. Geoffroy
a mis de l'alun calciné dans une cornue de terre ré-
fractaire, & l'a poussé au feu le plus violent pendant
six jours & six nuits sans interruption ; & de cinq
livres d'alun qu'il avait fournies à l'expérience, il n'a
retenir par cette longue distillation, qu'environ trois
onces d'acide vitriolique, quoiqu'il soit certain que
ce sel en contient une quantité infiniment plus grande,
come on le verra bientôt. La portion d'acide qu'on
tire ainsi de l'alun par la distillation, on nomme espirit
d'alun : il ne diffère en rien de l'acide vitriolique pur.

On
il s'est apparu de cette décomposition, en faisant bouillir de l'alun dans une marmite de fer. On trouve cette expérience de M. Geoffroi dans les Mémoires de l'académie des sciences.

Tout ce qu'on vient de dire sur ces différentes décompositions de l'alun, prouve incontestablement que l'acide de ce sel n'est autre chose que l'acide vitriolique pur ; et cette vérité est connue en chimie depuis un certain temps : mais il s'en fallait beaucoup qu'on eût des connaissances aussi nettes & aussi claires sur la nature de la terre de ce sel ; ce n'est que dans ces derniers temps, qu'on est parvenu à la bien connaître. Les chymistes ont été fort long-temps à la regarder comme terre calcaire. A mesure que les expériences bien faites se font multipliées, on a commencé à s'apercevoir d'abord que les terres calcaires quelquefois, combinées avec l'acide vitriolique, ne forment jamais que de la fètale, & non de l'alun qui en diffère totalement ; que la terre de l'alun ne décompoit point le sel amnoniac, ne se convertit point en chaux, enfin n'avoir aucune des propriétés qui caractérisent les terres calcaires. Ces expériences ont été faites par MM. Pott, Marggraft & Baron : ce dernier, frappé de ces différences de la terre de l'alun avec la terre calcaire, & de sa ressemblance avec la plupart des fels vitrioliques à base métallique ont avec l'alun, a donné un Mémoire à l'académie sur la base de l'alun, dans lequel il conjecture que cette base est de nature métallique.

D'un autre côté, il y a avait des expériences déjà faites, qui prouvaient au moins que la terre propre à former l'alun, était contenue dans les argiles. MM. Geoffroi & Hellot avaient dit qu'en faisant digérer des argiles dans l'acide vitriolique, ils en avaient retiré des fels de la nature de l'alun. Ce dernier ayant employé une argille comme intermédiaire dans la distillation de l'éther, s'était apparu que l'acide vitriolique de ce mélange avait enlevé toutes les propriétés argileuses à cette glaise, en lui enlevant une terre qui, séparée ensuite d'aucet acide par un alkali, avait elle-même toutes les propriétés d'une argille très-

(a) Mémoires de l'académie, 1739.
... naturelles, lorsqu'elles ont bien dépouilées de fable.

Cette propriété dénote, dans cette espèce de terre, une très grande disposition à se combiner avec le principe de l'inflammabilité, & à le retenir avec beaucoup de force, lorsqu'il lui est une fois uni. Cela peut faire conjecturer que les terres des métaux, & celles qui sont déposées à la métallisation, font efférentement de nature argileuse ; & cette idée ajoute une nouvelle probabilité à celle de M. Baron qui, dans un mémoire qu'il a donné sur la terre de l'alun, conjecture que cette terre est de nature métallique, quoiqu'elle ne soit point réellement réductible en métal, du moins par aucun des procédés clairs & suffisamment connus jusqu'à présent en chymie.

Quoi qu'il en soit, il paraît bien décidé, par les expériences des chymistes que j'ai cités, & par les ménages, que la terre de l'alun est une argile pure & exempte du mélange de toutes parties de terre vitrifiable, & que les argiles naturelles ont toutes un mélange d'une plus ou moins grande quantité de cette argile argileuse, propre à se combiner avec l'acide vitriolique & à former avec lui de l'alun, & d'une autre substance d'une nature différente, qui dans son état naturel ne se combine point avec l'acide vitriolique, que M. Margraff regarde comme un vrai fable, & qui en effet en a tous les caractères.

Il résulte de tout cela que, dans les argiles naturelles, il n'y a que cette portion qui peut former de l'alun avec l'acide vitriolique, qui peut être regardée comme la vraie terre argileuse, l'autre portion étant d'une nature absolument différente. Voyez Argile.

M. Parment (édition allemande du Dictionnaire de chymie) à l'occasion de ce que j'ai dit dans mon mémoire cité, sur la qualité réfractaire de la terre de l'alun, & sur l'espèce d'émail blanc qu'on en pouvait faire en la mélant & fondant avec des frittes de cristal, cite une expérience de M. Margraff, & celles qu'il a...
ALUN

dites lui-même, dont il résulte qu'on peut vitrifier complètement la terre, d'alun et les argiles les plus pures, en employant à cette vitrification affixe de feu & de fondans; c'est une chose dont je n'en doute nullement, & que j'ai dite dans nombre d'endroits de mes ouvrages, & nommément de ce Dictionnaire, que la qualité réfractaire n'est que relative, qu'il n'y a aucune substanse terreuse & fixe, qui ne soit essentiellement fusible & vitrifiable, que ces corps ne diffèrent entre eux à cet égard, que du plus au moins, les uns exigant seulement plus de fondans & de feu que les autres, pour arriver à une vitrification parfaite. Je vais même beaucoup plus loin, puisque j'avance qu'à la rigueur il n'y a aucune matière fixe qui ne puisse être vitrifiée, même sans aucun fondant, & par la seule action du feu, pourvu qu'elle soit affixe forte; il suit de là nécessairement, que non-seulement la terre de l'alun, quelque pure qu'elle soit, mais même les chaux blanches d'étain, d'antimoine, & toutes les autres font essentiellement vitrifiables, & qu'elles ne résistent dans la composition des émaux à l'action du feu & des matières vitrifiables, que parce que ces dernières ne font pas en proportion suffisante, ou parce que la chaleur n'est pas affixe forte & affixe long-tems continuée. Mr. Pernier a donc pris, dans sa note sur cet objet, une peine bien inutile.

L'alun est en état de décomposer le nitrè & le sel commun. On doit même obtenir les acides nitréux & marins plus purs par l'intermédiaire de l'alun, que par tout autre moyen. Cependant cette décomposition est longue, difficile, peut-être même incomplète.

Tout l'alun qui est dans le commerce, est tiré par différentes opérations, de plusieurs matières pyriteuses, terreuses ou pierreuses, qui contiennent de l'acide vitriolique & la terre propre à former ce sel.

Les pyrites ou matières pyriteuses, dont on retire l'alun, doivent avoir fleuri à l'air, ou avoir été calcinées au feu, pour donner lieu au développement de l'acide vitriolique du soufre qu'elles contiennent. Cet acide rencontrant dans la pyrite même la terre argil-
ALUN DE ROME.

Ce qu’elle ne fait point d’effervescence dans l’acide nitreux.

On remplit de cette terre ou pierre, jusqu’aux trois quarts, des chaudières de plomb de deux pieds & demi de diamètre & de profondeur. Ces chaudières sont enfoncées presque jusqu’à fleur de terre, sous un grand hangar éloigné des fourneaux à souffre d’environ quatre cents pas. On jette de l’eau dans chaque chaudière, jusqu’à ce qu’elle n’atteigne la terre de trois ou quatre pouces. La chaleur naturelle du terrain de cet endroit suffit pour échauffer la matière ; cette même chaleur fait monter le thermomètre de M. de Réaumur à trente-sept degrés & demi au-dessus du terme de la congélation, ce qui économise bien du bois. Par le moyen de cette digestion, la partie saline, dit M. l’abbé Nollet, se dégage de la terre, & s’élève à la superficie, d’où on la tire en gros cryftaux.

L’alun, en cet état, est encore chargé de beaucoup d’impuretés : on le porte à un bâtiment qui est à l’entrée de la Solfatara, & on le fait diffuser avec de l’eau chaude, dans un grand vase de pierre qui a la forme d’un entonnoir. L’alun s’y crystallise de nouveau & plus pur par le seul chaleur de l’endroit.

ALUN DE PLUME. On connoit sous ce nom deux substances fort différentes l’une de l’autre. L’une est une matière vraiment saline, qui a la saveur de l’alun, qui se diffus dans l’eau comme l’alun, & qui se crystallise en forme de plume. Cette éponge d’alun, qui est naturel, se trouve crystallisée dans des grottes où pénètrent des eaux minérales alumineuses ; M. de Tournefort l’a observée dans son voyage du Levant. Il est rare, & ne se trouve point dans le commerce. L’autre matière, à laquelle on a donné, assez mal à propos, le nom d’alun de plume, n’est autre chose que de l’amianté cassante ou de l’asbeste.

ALUN DE ROME. On trouve dans le territoire de Civita Vecchia, environ à quatorze lieues de Rome, une pierre dure, dont on retire beaucoup d’alun très-beau & très-pur ; l’endroit où l’on tire & où l’on travaille cette pierre, le nommé l’Aluminire della Tol.

Le travail qu’on fait sur cette pierre, qui n’est ni pyriteuse, ni calcaire, confite à la faire calciner comme la pierre à chaux, pendant douze ou quatorze heures, après l’avoir réduite en morceaux. Cette pierre, ainsi calcinée, est mise en plusieurs tas sur des places environnées de fûts remplis d’eau ; on l’arrose avec cette eau, trois ou quatre fois par jour, & pendant quarante jours, ou jusqu’à ce que la pierre calcinée entre dans une éponge d’effervescence, & se couvre d’une efflorescence de couleur rougeâtre. Alors on fait bouillir ces pierres avec de l’eau dans des chaudières, pour diffuser tout l’alun qui s’y est formé, & on a soin de charger ou d’évaporer l’eau jusqu’au point de cristallisation : on fait couler cette eau toute chaude dans des vaisseaux de bois de chêne, & par le refroidissement, il se forme dans ces vaisseaux une grande quantité de cryftaux irréguliers, qui ont un coup-d’œil rouge pâle : c’est sous cette forme que l’alun de Rome est dans le commerce. On n’est point en grosses maffes, comme celui qu’on nomme alun de roche, mais en morceaux gros comme des amandes, comme des noix ou comme des œufs : cet alun est mêlé aussi de beaucoup de poufrières un peu rougeâtre. J’ai examiné avec fin la pureté de l’alun de Rome, & je l’ai trouvé infiniment meilleur à cet égard, que l’alun de roche. Il ne contient pas un atome de matières métalliques ou vitrioliques : auffi est-il préféré pour certaines teintures, dont la plus petite quantité de vitriol martial atérisera la beauté ; son prix est auffi toujours au-dessus de celui de l’alun de roche.

L’alun est d’un très-grand usage dans plusieurs arts, & singulièrement dans celui de la teinture, dont il est l’ame ; il fait valoir la plupart des couleurs, augmentant beaucoup leur intensité & leur éclat. Il est même absolument nécessaire pour donner de la solidité à toutes les couleurs qui résident dans des substances gommeuses extractives. Sans lui, toutes ces teintures ne seraient qu’un mauvais barbouillage, que le simple lauge dans l’eau ferait capable d’emporter.

L’alun est une drogue astringente, d’une vertu forte
ALUN DE ROME.

& décide ; il convient par conséquent dans des maladies où les principales indications sont de fortifier & de réfréner, comme pour arrêter le flux immédiat des régies, les pertes, les fleurs blanchies, les diarrhées, les hémorragies, le vomissement de fang, & même certaines hémoptysies. Mais il est très-efficace d'observer au sujet de ce remède, & même de tous les astringents, qu'il faut qu'ils soient prescrits par un médecin clairé & qui puissent distinguer si les maladies dont on vient de parler ne sont point accompagnées ou occasionnées par l'inflammation ou l'engorgement ; car il est bien certain que, dans ce cas, les astringens, bien loin d'être utiles, ne peuvent qu'au contraire être que pertinaces, & augmenter la cause du mal : l'alun ne convient donc dans ces maladies, que quand il est évident qu'elles ne viennent que d'un simple relâchement ou rupture de vaisseaux ; mais aussi il faut alors de très bons effets.

Comme l'alun est un des plus forts astringens, & qu'il a même un peu de causticité, plusieurs médecins clairés, comme MM. Cartheyer & Baron dans ses œuvres sur la chimie de Lémeri, consient de ne jamais faire prendre ce remède intérieurement ; cependant il est certain que, dans le cas où on vient de parler, il s'ensuit tous les jours & avec succès : il est prudent néanmoins (à moins que le cas ne soit extrêmement urgent) de ne faire prendre d'abord l'alun qu'en petites doses, comme de deux ou trois grains ; on peut, il en est besoin, aller jusqu'à dix ou douze : ce remède s'ordonne seul ou marie avec d'autres astringens, ou bien l'alun peut être prescrit dans le malade, ou bien avec d'autres astringens, suivant les indications.

L'alun étant susceptible d'être décomposé par toutes les matières alcalines & calcaires, il faut éviter de le mêler avec ces substances, si l'on veut qu'il produise son effet comme astringent. On emploie souvent l'alun à l'extérieur ; il réfrène & fortifie considérablement les parties vers lesquelles on l'applique ; il est par conséquent un répercussion très-efficace ; il fait très-sien dans les collyres & les gargarismes astringens.

Lorsqu'il est calciné, on le faupoudre sur les eaux molles & fongueuses, qui s'opposent à la cicatrisation des ulceres ; il en absorbe l'humidité, les dessèche & même les consume.

ALUMINEUX. C'est ce qui contient de l'alun, ou ce qui participe de la nature de ce fel.

AMALGAME. Le nom d'amalgame est affecté en chimie à l'alliage du mercure avec les autres matières métalliques.

Le mercure, en qualité de substance métallique, ne peut contracter aucune union avec les matières terreuses, ni même avec les terres des métaux, quand elles sont dépouillées de phlogistique, & privées de la forme métallique ; mais il est capable de s'allier plus ou moins facilement, avec presque toutes les substances métalliques.

Comme le mercure est habituellement fluide, qu'il doit être considéré comme un métal qui est dans une fusion perpétuelle, & qu'il suffit, pour la plupart des combinaisons, qu'un des deux corps qui doivent s'unir soit liquide ; il s'en suit que, dans le feu de l'eau, on peut amalgamer le mercure avec beaucoup de substances métalliques. Il y a en général deux moyens de faire les amalgames : le premier, à froid & par simple triturution ; & le second, par la fusion du métal avec lequel on veut unir le mercure, & dans lequel, lorsqu'il est fondu, on en mêle la quantité qu'on juge à propos.

Le mercure, en s'unissant aux métaux, les rend en général friables & capables de se réduire presque en poudre, quand il n'est qu'en petite quantité ; s'il est en quantité plus grande, il le réduit en masses pétillantes, en une espèce de pâte, mais qui manque de ductilité & de ténacité.

L'or est de tous les métaux celui avec lequel le mercure a la plus grande affinité, & avec lequel il s'unit le plus facilement : il suffit que le mercure soit légèrement frotté sur un morceau d'or, ou qu'il séjourne pendant quelque temps dans un vase de ce métal, pour qu'il le dissolve ; on observe que l'endroit qui a été touché par le mercure, devient blanc comme
La chaîne facilite beaucoup l'amalgamation du mercure, & fortuit le premier, tout fort placé pour former ces deux métaux de leur extrait pour les demi-mêtres, & pour placer ces deux métaux, ou plutôt d'avoir avec les matières précieuses. Les amalgames de fer & de fer & argenteux. L'amalgam d'argent suffi pour certaines épaisseurs de dorure & d'argent, & il suffit de faire des piqûres de mercure jusqu'à ce qu'il commence à s'évaporer. Il est néanmoins possible de le faire dans des parties difficiles, & de le faire dans une autre manière, de façon que cela ne dépend pas des expériences les plus exécutées.

Le mercure s'amalgame assez facilement avec les métaux, mais une plus grande quantité de mercure, plus difficilement avec le métal, & en particulier avec le fer. Il est donc préférable de choisir pour une petite quantité de mercure, par exemple, un métal peu sensible & facile à dépouiller de l'amalgame, parce que le mercure demeure plus difficilement dépendant de l'amalgame, que l'on applique à l'amalgame du mercure, & tant que l'on applique une petite quantité de mercure, il est très imprudent de faire dans un initialement, le mercure, en remuant un peu de l'amalgame, de cette manière, il est très imprudent de faire dans un initialement, de ce métal, & de faire dans un initialement, de ce métal, qui demande une grande chaleur pour son fusion. Il le fait dans un initialement, de ce métal, qui demande une grande chaleur pour son fusion.
ment au mercure, comme on l'a dit plus haut. M. Gellert dit que, pour réussir à faire cette amalgame, il faut mettre le régule dans le mercure chaud, & le couvrir d'eau; mais que, lorsqu'on a préparé le régule d'antimoine par le moyen du fer ou d'une terre alkaline, cette amalgame ne se fait beaucoup mieux, & que le régule ne se sépare point du mercure au bout d'un certain temps, comme il a coutume.

L'amalgamation ou l'alliage des métaux avec le mercure étant une vraie dissolution, de laquelle il résulte une combinaison des métaux diffus l'un par l'autre, cette opération présente les mêmes phénomènes que les autres disolutions; c'est-à-dire, que le mercure confidéré comme dissolvant, s'amalgame avec certains métaux dans toute forte de proportions, avec d'autres faiblement dans certaines proportions, plus ou moins grandes, suivant la nature du métal, peut-être même en plus grande quantité à chaud qu'à froid. Vraisemblablement aussi plusieurs métaux diffus par le mercure pourraient en être séparés ou précipités par d'autres métaux, ce qui n'a pas encore été bien examiné; enfin M. Routelle, dans nos cours du Jardin du roi, met tous les ans sous les yeux de ses auditeurs de très-belles cristallisations d'amalgames, qui ressemblent aux cristallisations salines, à la transparence presque, à cause de l'opacité essentielle des substances métalliques.

Les affinités des substances métalliques avec le mercure sont déterminées, dans la table de M. Geoffroy, dans l'ordre suivant: l'or, l'argent, le plomb, le cuivre, le zinc & le régule d'antimoine.

Dans la table de M. Gellert, on trouve l'or, l'argent, le bismuth, le zinc, l'étain, le plomb, le cuivre & le régule d'antimoine.

Comme les amalgames de mercure sont de véritables alliages des substances métalliques, toutes les généralités sur ces alliages métalliques sont applicables à ces-ci; c'est pourquoi il faut consulter à ce sujet le mot ALLIAGE.

AMBRE. On a donné le nom d'ambre à deux espèces de matières bitumineuses, dont l'une qui est plus ou moins jaune & transparente, le nomme ambre jaune ou succin.

L'autre espèce d'ambre est celle qu'on nomme ambre gris, à cause de la couleur qui est effectivement grise; c'est une substance que la plupart des chimistes & des naturalistes mettent au nombre des bitumes, plutôt d'après ses propriétés & à cause des principes qu'elle fournit lorsqu'on la distille, que par une connaisance certaine de son origine: car il paraît qu'on ne connait point d'ambre gris véritablement fossile, & que tout ce qu'on en trouve dans le commerce est tiré de la mer des Indes, sur laquelle il flotte, dans le voisinage des îles Moluques.

M. Cartheuser ne fait aucune difficulté de regarder l'ambre gris comme un vrai bitume; & ce qui le détermine, ce sont les analyses qui en ont été faites par plusieurs chimistes, & fur tout par Neuman: analyses par lesquelles il paraît que ces chimistes ont retiré de l'ambre gris les mêmes principes que du succin, c'est-à-dire du phlegme, un acide volatile, partie fluide, partie concret, de l'huile & un peu de matière charbonneuse.

D'ailleurs, l'ambre gris oppose à la dissolution dans les différents menstrues, à peu près les mêmes difficultés que le succin & les autres bitumes; mais il dif- fère du succin, en ce qu'il a beaucoup moins de dureté, qu'il n'est point poli, & qu'il ne peut prendre le poli; de plus, il n'est point transparent, & est susceptible de se fondre; la seule chaleur des mains suffit pour le ramollir comme la cire; il laisse aussi infiniment moins de résidu carbonneux que le succin après sa distillation: toutes ces propriétés dénotent que l'ambre gris est beaucoup plus huileux que le succin.

L'odeur agréable de l'ambre gris est rend un grand usage dans les parfums; on lui a donné néanmoins, ou même on lui substitue presque toujours le mufc, non pas parce que ce dernier est à plus bas prix, car il est aussi fort cher; mais à cause qu'on ose être infiniment plus forte, il foisonne beaucoup davantage.
AMMONIAC.

L'ambre gris est d'usage aussi dans la médecine ; il a les mêmes vertus générales que toutes les substances très-odorantes, à cause de leur esprit recteur ou de la matière huileuse très-atténuée & très-volatile, qui est le principe de leur odeur. Il entre dans plusieurs compositions corolaires, formoliques, alexiteres : on lui attribue aussi la propriété d'exciter à l'acte vénérien. Mais si vertu la plus effrénée est d'être anti-épisthodique & calmant, à peu près comme le mug & le calafourou, & de pouvoir procurer du soulagement dans certaines affectionnes hystériques, vapoéules, con- vulsives & autres maladies du genre nerveux. On peut le faire prendre intérieurement, depuis un demi-grain jusqu'à dix ou douze, ou même davantage ; car fur les doses, il n'y a en quelque force aucune règle pour ces fortes de remèdes & de maladies.

AMMONIAC (Sel). On peut nommer en général sel ammoniac, tout sel neutre composé d'un acide quelconque, un jusqu'au point de satiuration avec l'alkali volatil : mais c'est à celui qui résulte de l'union de l'acide du sel commun avec cet alkali, qu'est affecté plus particulièrement le nom de sel ammoniac, quand on n'y ajoute point d'épithète ; tous les autres fels ammoniacs sont spécifiés par des épithètes particulières : comme sel ammoniac vitriolique, sel ammoniac nitreux, sel ammoniac végétal. On parlera succeffivem de ces différents fels.

Tous les fels ammoniacaux ont les propriétés générales des fels neutres, composés d'acides & d'alkali ; mais ils diffèrent de leurs correspondants qui ont pour base un alkali fixe, par leur sève qui est beaucoup plus vive & plus piquante, qui vient de la moindre adhérence qu'ont les acides en général avec l'alkali volatil qu'avec l'alkali fixe ; en second lieu, par leur moindre fixité, les fels ammoniacaux étant tous demi-volatils, c'est-à-dire, capables de se sublimer lorsqu'ils éprouvent une chaleur assez forte ; cette propriété est due à la volatilité de l'alkali qui leur furt de base. Enfin les fels ammoniacaux sont susceptibles d'être décomposés par beaucoup de substances qui ne peuvent produire

AMMONIAC.

produire le même effet sur les fels neutres à base d'alkali fixe, comme on va le voir par l'examen plus particulier des propriétés de ces fels.

Le sel ammoniac le plus connu et le plus utile, est celui qui contient l'acide du sel commun. Ce sel, lors qu'il est bien pur, est très-blanc, demi-transparent, susceptible de se cristalliser en forme de barbes de plumes, ou de se sublimer dans les vaisseaux clos, en masse assez compacte, dans laquelle on remarque des filets appliqués dans leur longueur parallèlement les uns aux autres.

Ce sel se diffusent très-facilement dans l'eau : il se répand, lorsqu'il est exposé, pendant un certain temps, à un air humide. C'est un des fels qui produisent plus de froid par sa dissolution dans l'eau ; ce refroidissement va à dix-huit ou vingt degrés, à même davantage, suivant la température actuelle. Il paraît que plus il fait chaud, & plus le refroidissement qu'il occasionne est considérable ; ce qui vient de ce que ce sel est un de ceux qui se dissolvent plus promptement & en plus grande quantité dans l'eau chaude que dans l'eau froide.

M. Gellert, Chymie, tome I, p. 167, dit que, on fait bouillir de la gomme ou de la résine dans de l'eau chargée de sel ammoniac, ces substances s'y dissolvent. Cette expérience n'a rien qui doive surprendre, en ce qui regarde la dissolution de la gomme, attendu que l'eau est fon dissolvant naturel ; mais comme l'eau pure n'attaque point du tout les résines, il faut bien que ce soit le sel ammoniac qui procure cette dissolution.

Le sel ammoniac ne peut se décomposer, ou du moins que très-peu, par la seule action du feu, dans les vaisseaux clos, parce qu'alors il se sublume en entier, comme on l'a dit : si donc on veut le décomposer, il faut avoir recours à quelqu'interméde capable de dégager, ou fon acide, ou fon alkali.

Les acides ayant, en ce qui concerne leurs affinités, les mêmes relations avec l'alkali volatil qu'avec les alkalis fixes, il s'ensuit que le sel ammoniac doit présenter, avec les acides vitrioliques & nitreux, les mêmes

Tome I.
Phéno
des de décompo
 système deux acides ont
t-il en état de décompo
er les acides qui
issent libre dans
ant, & s'yunissent
r la distillation,
se le premier un fel
ammoniac vitriolique,

- Il est à observer, à larend de la composition
fel ammoniac par l'acide
x, que l'acide marin ne
un point neuf dans cette
naisse ; qu'il est
toujours accompagné d'une bonne
x de l'eau volatil, & qui fait
avec lui le cau
t qu'il faut user de beaucoup
ménagement, de lenteur & de précautions dans cette
; fur-tout il on empoile de l'acide
ommant, parce que les vapeurs qui
infiniment plus expansibles & plus difficiles à conden
elles des acides nitreux & marin purs ; ce qui
ent, sans doute, de la réaction de ces deux acides
un fur-l'autre, & du dégagement de quelque gaz. Il
résulte de cette opération le fel
x ammoniacal nitreux. Voyez AMMONIAC, Sel
ireux.

Voici pour ce qui concerne la décomposition du fel
ammoniac par l'intermédiaire des acides qui s'emparent
on alkali, & dégagent son acide ; mais ce fel est
futur, car il est décomposé par beaucoup de substances
qui produisent l'effet contraire ; c'est-à-dire, qui s'emparent
on acide, & rendent libre l'alkali volatil qui
mécaniques. Ces substances sont les terres calcaires, la
affles, l'alkali fixe, & les matières métalliques. Voici les phénomènes les plus essentiels que présente
fel, lorsqu'on le traite avec ces différentes matières.

Si l'on mêle exactement du fel ammoniac réduit en
poudre, avec le double de son poids d'une terre calcaire quelconque, de la craie, par exemple, aussitôt réduite en poudre, & qu'on procède à la distillation dans
un appareil de vaisselle convenables ; on voit paffer
le récipient une grande quantité d'alkali volatil
s'effondre concret, très-blanc & très-beau, qui tap
ifie tout l'intérieur du balon ; & quand l'opération est
inée, on trouve dans la cornue une maffe qui contient

AMMONIAC.

tout l'acide du fel ammoniac, engagé & retenu dans la
terre calcaire ; si par conséquent on leisse ce caput
mortuum, pour diffuser ce qu'il contient de fain,
on trouve que cette lessive est chargée de beaucoup
de fel marin à base terreuse.

Cette décomposition du fel ammoniac par la craie,
qui réunit de même par l'intermédiaire de toute autre
terre calcaire, est accompagnée de circonstances qui incite
la plus grande attention. Elle ne fait qu'à l'aide
de la chaleur ; le mélange le plus exact du fel ammoniac
& de la terre calcaire ne laisse échapper aucune vapeur
d'alkali volatil, tant qu'il n'est point chauffé. En second lie,
l'alkali volatil qu'on obtient de cette décomposition
est crytalifère & sous forme concret feche & même
très-solide. Il est absolument privé de ce qu'on nomme
proprement causticité dans les alkalis ; c'est-à-dire,
que quoi qu'il ait la saveur urinée & l'acréte particulière
ces substances salines, cette acrété est cepen
dant la plus mitigée & la plus douce que puissait avoir
un alkali volatil. Celui dont il s'agit à présent produit
 toujours une grande effervescence, & point ou presque
point de chaleur, lorsqu'on le combine avec un acide
quelconque ; il précipite la chaux & toutes les terres
calcaires, d'avec tous les acides ; mais ce qu'il y a de
plus remarquable, c'est que, quoi qu'on fache qu'il n'y
a qu'à peu près autant d'alkali volatil que d'acide
dans le fel ammoniac, il est cependant certain que
de l'acte de fel ammoniac décomposé par une terre
calcaire, on retire au moins quatorze onces d'alkali
volatil très-concret & même dur ; c'est-à-dire, près de
la moitié de plus qu'il n'en a réellement dans le fel
ammoniac. M. Duhamel, un des premiers physiciens
qui aient examiné toutes les circonstances de cette dé
composition du fel ammoniac par la craie, & qui a
fort bien remarqué cette augmentation étonnante de
l'alkali volatil, a pensé qu'elle venait d'une portion de
la terre calcaire, qui était enlevée, incorporée & même
combinée avec cet alkali volatil. M. Baumé ayant fait
difficulté de ce fel dans de l'eau, n'en ayant retiré que
deux grains de terre sur une livre de fel, & n'en ayant

L ij